Skip to main content

Chaos and Lyapunov Stability

  • Chapter
  • First Online:
Book cover Cellular Automata: Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1977 Accesses

Abstract

In the preceding section we introduced a classification of cellular automata based on attractors, their number and structure. In the present section we focus on the complexity of the dynamics. The two aspects are not independent, but differ slightly. We start with Devaney’s definition of chaos, and relate this definition to the Hurley classification. Thereafter we investigate a class of cellular automata that induce chaotic dynamics: permutive cellular automata. In the last part of this section we focus on one special property of chaotic dynamics: sensitive dependency on initial conditions. It is possible to recognize complex dynamics by inspecting the fate of two neighboring points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-P. Allouchea, G. Skordev, Remarks on permutive cellular automata. J. Comput. Syst. Sci. 62, 174–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacy, On Devaney’s definition of chaos. Am. Math. Month. 99, 332–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Cattaneo, M. Finelli, L. Margara, Investigating topological chaos by elementary cellular automata dynamics. Theor. Comput. Sci. 244, 219–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups. Springer Monographs in Mathematics (Springer, Berlin, 2010)

    Google Scholar 

  5. B. Codettoni, L. Margara, Transitive cellular automata are sensitive. Am. Math. Month. 103, 58–62 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.L. Devaney, Chaotic Dynamical Systems (Westview Press, New York, 2003)

    MATH  Google Scholar 

  7. P. Favati, G. Lotti, L. Margara, Additive one-dimensional cellular automata are chaotic according to Devaney’s definition of chaos. Theor. Comput. Sci. 174, 157–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Gilman, Classes of linear automata. Ergod. Theory Dyn. Syst. 7, 105–118 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Theory 3, 320–374 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Kůrka, Languages, equicontinuity and attractors in cellular automata. Ergod. Theory Dyn. Syst. 17, 417–433 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.C. Oxtoby, S.M. Ulam, On the existence of a measure invariant under a transformation. Ann. Math. 40, 560–566 (1939)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadeler, KP., Müller, J. (2017). Chaos and Lyapunov Stability. In: Cellular Automata: Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-53043-7_6

Download citation

Publish with us

Policies and ethics