Skip to main content

Besicovitch and Weyl Topologies

  • Chapter
  • First Online:
Cellular Automata: Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1979 Accesses

Abstract

In the last sections we realized that the Cantor metric and cellular automata fit very well together: any cellular automaton can be viewed as a continuous map of a metric Cantor space and any continuous function on a metric Cantor space can be embedded into a cellular automaton. However, there is one major drawback: the Cantor metric is not translational invariant. The metric is focused on a region near the origin and everything far away is neglected. The amount of information that is neglected may be tremendously large, as “everything else” is an infinite region, while the “near region” is finite. A perturbation of a state is considered small if it agrees with the state on a (large, but finite) region around the origin. The states at cells in the remaining, infinite part of the grid may be arbitrary. The intuitive idea of a “small perturbation” is not met by the concept of the Cantor metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Besicovitch, Almost Periodic Functions (Dover, New York, 1954)

    MATH  Google Scholar 

  2. F. Blanchard, E. Formenti, Cellular automata in the Cantor, Besicovitch, and Weyl topological spaces. Complex Syst. 11, 107–123 (1999)

    MathSciNet  MATH  Google Scholar 

  3. F. Blanchard, J. Cervelle, E. Formenti, Periodicity and transitivity for cellular automata in Besocovitch topologies. Lect. Not. Comput. Sci. 2747, 228–238 (2003)

    Article  MATH  Google Scholar 

  4. F. Blanchard, J. Cervelle, E. Formenti, Some results about the chaotic behavior of cellular automata. Theor. Comput. Sci. 349, 318–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Capobianco, Surjunctivity for cellular automata in Besicovitch spaces. J. Cell. Autom. 4, 89–98 (2009)

    MathSciNet  MATH  Google Scholar 

  6. S. Capobianco, On pattern density and sliding block code behavior for the Besicovitch and Weyl pseudo-distances, in SOFSEM 2010: Theory and Practice of Computer Science, ed. by J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorny, B. Rumpe. Lecture Notes in Computer Sciences, vol. 5901 (Springer, Berlin, 2010), pp. 259–270

    Google Scholar 

  7. G. Cattaneo, L. Formeni, L. Margara, J. Mazoyer, A shift-invariant metric on \(S^{\mathbb{Z}}\) inducing a nontrivial topology, in Mathematical Foundations of Computer Sciences, ed. by I. Prívara, P. Rusika. Lecture Notes in Computer Sciences, vol. 1295 (Springer, Berlin, 1997), pp. 179–188

    Google Scholar 

  8. T. Downarowicz, A. Iwanik, Quasi-uniform convergence in compact dynamical systems. Stud. Math. 89, 11–25 (1988)

    MathSciNet  MATH  Google Scholar 

  9. A. Mann, How Groups Grow (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  10. J. Müller, C. Spandl, A Curtis–Hedlund–Lyndon theorem for Besicovitch and Weyl spaces. Theor. Comput. Sci. 410, 3606–3615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvarietes. Ergod. Theory Dyn. Syst. 3, 415–445 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadeler, KP., Müller, J. (2017). Besicovitch and Weyl Topologies. In: Cellular Automata: Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-53043-7_4

Download citation

Publish with us

Policies and ethics