Skip to main content

Tellurite Glass Fibers for Mid-infrared Nonlinear Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 254))

Abstract

In this chapter, we review recent progress of using tellurite glass nonlinear optical fibers for mid-infrared nonlinear applications. First, we introduce various fabrication approaches producing conventional solid core/cladding tellurite glass preforms and structured tellurite glass preforms. Second, two technical difficulties have been found during the early stage of using small-core tellurite glass fiber for generating nonlinear supercontinuum into mid-infrared region. Approaches such as glass dehydration and large-mode-area fiber have been developed for solving these problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs. Nat Photonics 6, 440–449 (2012)

    Article  ADS  Google Scholar 

  2. E. Sorokin, I.T. Sorokina, M.S. Mirov, V.V. Fedorov, I.S. Moskalev, S.B. Mirov Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers. Paper presented at the Adv. Solid-State Photon., San Diego, CA, (2010)

    Google Scholar 

  3. IPG Photonics, TM:ZnSe/S SERIES. http://www.ipgphotonics.com/Collateral/Documents/English-US/TM_ZnSE_S_Series_IPG_datasheet.pdf. Accessed 29 June 2015

  4. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, S. Slivken, Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers. Opt Mater Express 3, 1872–1884 (2013)

    Article  Google Scholar 

  5. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers. Appl. Phys. Lett. 101, 241110 (2012)

    Article  ADS  Google Scholar 

  6. X. Zhu, N. Peyghambarian, High-power ZBLAN glass fiber lasers: Review and prospect. Adv Optoelectron 2010, 501956 (2010)

    Article  Google Scholar 

  7. S.D. Jackson, Towards high-power mid-infrared emission from a fibre laser. Nat Photonics 6, 423–431 (2012)

    Article  ADS  Google Scholar 

  8. M. Ebrahimzadeh, in Topics in applied physics, volume 89, solid-state mid-infrared laser sources, ed by I. T. Sorokina, K. L. Vodopyanov. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003), pp. 184–224

    Chapter  Google Scholar 

  9. P. Russell, J. St, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  10. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  11. D.K. Serkland, P. Kumar, Tunable fiber-optic parametric oscillator. Opt. Lett. 24, 92–94 (1999)

    Article  ADS  Google Scholar 

  12. S.T. Cundiff, J. Ye, Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)

    Article  ADS  Google Scholar 

  13. B. Szigeti, Polarisability and dielectric constant of ionic crystals. Trans. Faraday Soc 45, 155–166 (1949)

    Article  Google Scholar 

  14. J.Y. Boniort, C. Brehm, P.H. DuPont, D. Guignot, C. Le Sergent, Infrared glass optical fibers for 4 and 10 micron bands. Paper presented at 6th European Conference on Optical Communication, University of York, UK, 16–19 September 1980 (1980)

    Google Scholar 

  15. M. Poulain, M. Poulain, J. Lucas, P. Brun, Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+. Mater. Res. Bull. 10, 243–246 (1975)

    Article  Google Scholar 

  16. N.S. Kapany, R.J. Simms, Recent developments of infrared fiber optics. Infrared Phys 5, 69–75 (1965)

    Article  ADS  Google Scholar 

  17. A. Mori, H. Masuda, K. Shikano, M. Shimizu, Ultra-wide-band tellurite-based fiber Raman amplifier. IEEE J Lightwave Technol 21, 1330–1306 (2003)

    Article  ADS  Google Scholar 

  18. T. Mizunami, H. Iwashita, K. Takagi, Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers. Opt Commun 97, 74–78 (1993)

    Article  ADS  Google Scholar 

  19. D. Szebesta, S.T. Davey, J.R. Williams, M.W. Moore, OH absorption in the low loss window of ZBLAN(P) glass fibre. J Non-Cryst Solids 161, 18–22 (1993)

    Article  ADS  Google Scholar 

  20. J.S. Sanghera, L. Brandon Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J Sel Top Quantum Electron 15, 114–119 (2009)

    Article  Google Scholar 

  21. R.E. Slusher, J. Hodelin, J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J Opt Soc Am B 21, 1146–1155 (2004)

    Article  ADS  Google Scholar 

  22. A.V. Vasilev, G.G. Devyatykh, E.M. Dianov, A.N. Guryanov, A.Y. Laptev, A.Y. Laptev, V.G. Plotnichenko, Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km. Quantum Electron 23, 89–90 (1993)

    Article  ADS  Google Scholar 

  23. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: A new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    Article  ADS  Google Scholar 

  24. G. Ghosh, Sellmeier coefficients and chromatic dispersions for some tellurite glasses. J. Am. Ceram. Soc. 78, 2828–2830 (1995)

    Article  Google Scholar 

  25. S. Mitachi, T. Miyashita, T. Kanamori, Fluoride-glass-cladded optical fibres for mid-infra-red ray transmission. Electron Lett 17, 591–592 (1981)

    Article  ADS  Google Scholar 

  26. T. Kanamori, S. Sakaguchi, Preparation of elevated NA fluoride optical fibers. Japan J Appl Phys 25, L468–L470 (1986)

    Article  ADS  Google Scholar 

  27. S. Sakaguchi, S. Takahashi, Low-loss fluoride optical fibers for midinfrared optical communication. J Lightwave Technol 5, 1219–1228 (1987)

    Article  ADS  Google Scholar 

  28. D.C. Tran, C.F. Fisher, G.H. Sigel, Fluoride glass preforms prepared by a rotational casting process. Electron Lett 18, 657–658 (1982)

    Article  Google Scholar 

  29. G. Lu, I. Aggarwal, Recent advances in fluoride glass fiber optics in the USA. Mater. Sci. Forum 19-20, 375–380 (1987)

    Article  Google Scholar 

  30. X. Feng, A.K. Mairaj, D.W. Hewak, T.M. Monro, Nonsilica glasses for holey fibers. J Lightwave Technol 23, 2046–2054 (2005)

    Article  ADS  Google Scholar 

  31. E. Roeder, Extrusion of glass. J Non-Crystall Solids 5, 377–388 (1971)

    Article  ADS  Google Scholar 

  32. J.E. Stanworth, Tellurite glasses. Nature 169, 581–582 (1952)

    Article  ADS  Google Scholar 

  33. H. Rawson, Inorganic glass forming systems (Academic Press, London, New York, 1967)

    Google Scholar 

  34. A.K. Yakhkind, Tellurite glasses. J. Am. Ceram. Soc. 49, 670–675 (1966)

    Article  Google Scholar 

  35. V.V. Dorofeev, A.N. Moiseev, M.F. Churbanov, G.E. Snopatin, A.V. Chilyasov, I.A. Kraev, A.S. Lobanov, T.V. Kotereva, L.A. Ketkova, A.A. Pushkin, V.V. Gerasimenko, V.G. Plotnichenko, A.F. Kosolapov, E.M. Dianov, High-purity TeO2–WO3–(La2O3, Bi2O3) glasses for fiber-optics. Opt. Mater. 33, 1911–1915 (2011)

    Article  ADS  Google Scholar 

  36. X. Feng, J.C. Flanagan, K.E. Frampton, P. Petropoulos, N.M. White, J.H.V. Price, W.H. Loh, H.N. Rutt, D.J. Richardson, Developing single-mode tellurite glass holey fiber for infrared nonlinear applications. Adv. Sci. Tech. 55, 108–117 (2008)

    Article  Google Scholar 

  37. O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann, Analysis of OH absorption bands in synthetic silica. J Non-Crystall Solids 203, 19–26 (1996)

    Article  ADS  Google Scholar 

  38. P.W. France, S.F. Carter, J.R. Williams, K.J. Beales, J.M. Parker, OH-absorption in fluoride glass infra-red fibres. Electron Lett 20, 607–608 (1984)

    Article  ADS  Google Scholar 

  39. X. Feng, S. Tanabe, T. Hanada, Hydroxyl groups in erbium-doped germanotellurite glasses. J Non-Crystall Solids 281, 48–54 (2001)

    Article  ADS  Google Scholar 

  40. P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008)

    Article  ADS  Google Scholar 

  41. A.E. Comyns, Fluoride glasses (Wiley, Hoboken, NJ, 1989)

    Google Scholar 

  42. S. Nagel, J.B. MacChesney, K. Walker, An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Trans Microwave Theory Tech 18, 459–476 (1982)

    Google Scholar 

  43. M.D. O’Donnell, C.A. Miller, D. Furniss, V.K. Tikhomirov, A.B. Seddon, Fluorotellurite glasses with improved mid-infrared transmission. J. Non-Crystall Solids 331, 48–57 (2003)

    Article  Google Scholar 

  44. X. Feng, J. Shi, M. Segura, N.M. White, P. Kannan, W.H. Loh, L. Calvez, X. Zhang, L. Brilland, Halo-tellurite glass fiber with low OH content for 2-5 μm mid-infrared nonlinear applications. Opt. Express 21, 18949–18954 (2013)

    Article  ADS  Google Scholar 

  45. X. Feng, J. Shi, M. Segura, N.M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, W.H. Loh, Towards water-free tellurite glass fiber for 2–5 μm nonlinear applications. Fibers 1, 70–81 (2013)

    Article  Google Scholar 

  46. H. Ebendorff-Heidepriem, K. Kuan, M.R. Oermann, K. Knight, T.M. Monro, Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt Materials Express 2, 432–442 (2012)

    Article  Google Scholar 

  47. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen, Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. J Opt Soc Am B 19, 765–771 (2002)

    Article  ADS  Google Scholar 

  48. A.Y.H. Chen, G.K.L. Wong, S.G. Murdoch, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Widely tunable optical parametric generation in a photonic crystal fiber. Opt. Lett. 30, 762–764 (2005)

    Article  ADS  Google Scholar 

  49. T.M. Monro, Y.D. West, D.W. Hewak, N.G.R. Broderick, D.J. Richardson, Chalcogenide holey fibres. Electron Lett 36, 1998–2000 (2000)

    Article  Google Scholar 

  50. V.V.R.K. Kumar, A.K. George, J.C. Knight, P.S.J. Russell, Tellurite photonic crystal fiber. Opt. Express 11, 2641–2645 (2003)

    Article  ADS  Google Scholar 

  51. T. Delmonte, M.A. Watson, E.J. O’Driscoll, X. Feng, T.M. Monro, V. Finazzi, P. Petropoulos, J.H.V. Price, J.C. Baggett, W. Loh, D.J. Richardson, D.P. Hand, Generation of mid-IR continuum using tellurite microstructured fiber. Paper presented at Conference of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), Long Beach, California, USA 21–25 May 2006 (2006)

    Google Scholar 

  52. X. Feng, T.M. Monro, V. Finazzi, R.C. Moore, K. Frampton, P. Petropoulos, D.J. Richardson, An extruded single-mode high-nonlinearity tellurite glass holey fibre. Electron Lett 41, 835–837 (2005)

    Article  Google Scholar 

  53. A. Boskovic, S.V. Chernikov, J.R. Taylor, L. Gruner-Nielsen, O.A. Levring, Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Opt. Lett. 21, 1966–1968 (1996)

    Article  ADS  Google Scholar 

  54. N.G.R. Broderick, T.M. Monro, P.J. Bennett, D.J. Richardson, Nonlinearity in holey optical fibers: Measurement and future opportunities. Opt. Lett. 24, 1395–1397 (1999)

    Article  ADS  Google Scholar 

  55. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  56. M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D.J. Richardson, P. Petropoulos, J.H.V. Price, Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers. Opt. Lett. 40, 2237–2240 (2015)

    Article  ADS  Google Scholar 

  57. J. Shi, X. Feng, P. Horak, K. Chen, P.S. Teh, S. Alam, W.H. Loh, D.J. Richardson, M. Ibsen, 1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient. J Lightwave Technol 29, 3461–3469 (2011)

    Article  ADS  Google Scholar 

  58. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, T. Cardinal, Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. Opt. Lett. 28, 1126–1128 (2003)

    Article  ADS  Google Scholar 

  59. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  60. X. Feng, W.H. Loh, J.C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K.E. Frampton, N.M. White, J.H.V. Price, H.N. Rutt, D.J. Richardson, Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Opt. Express 16, 13651–13656 (2008)

    Article  ADS  Google Scholar 

  61. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  62. A.M. Grassi, F. Casagrandea, M. D’Alessandroa, S. Marinonia, Single-modeness of short large mode area fibers: An experimental study. Opt Commun 273, 127–132 (2007)

    Article  ADS  Google Scholar 

  63. L. Dong, X. Peng, J. Li, Leakage channel optical fibers with large effective area. J Opt Soc Am B 24, 1689–1697 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. P. Petropoulos, Prof. D. J. Richardson, Mr. K. E. Frampton, Mr. N. M. White, Dr. M. Segura, Dr. J. Shi, and Dr. W. Loh of the Optoelectronics Research Centre, University of Southampton, for their contributions.

Xian Feng also thanks Prof. Setsuhisa Tanabe, Dr. Jau-Sheng (Jimmy) Wang, and Prof. Elias Snitzer for fruitful discussions in the early stages of developing tellurite glass fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feng, X., Horak, P., Poletti, F. (2017). Tellurite Glass Fibers for Mid-infrared Nonlinear Applications. In: Rivera, V., Manzani, D. (eds) Technological Advances in Tellurite Glasses. Springer Series in Materials Science, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-53038-3_9

Download citation

Publish with us

Policies and ethics