Skip to main content

Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors

  • Chapter
  • First Online:

Abstract

Well-defined mesoporous polymers whose pore size and structure are well controlled, are potentially useful for advanced applications including filtration, separation, and catalysis. Such porous polymers can be derived from microphase-separated block polymer precursors by the selective removal of sacrificial blocks. This chapter focuses on robust cross-linked mesoporous polymers with greatly improved pore stability produced by cross-linking of the matrix block in the precursor. The chapter surveys various approaches for synthesizing cross-linked block polymer precursors, examines mechanisms that can arrest transient morphologies using the competition between cross-linking and ordering kinetics, and discusses how the stability of the resulting mesopore structures can be enhanced by cross-linking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ingham CJ, ter Maat J, de Vos WM (2012) Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol Adv 30:1089–1099

    Article  Google Scholar 

  2. Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  3. Beck JS, Vartuli JC, Roth WJ et al (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  Google Scholar 

  4. Barton TJ, Bull LM, Klemperer WG et al (1999) Tailored porous materials. Chem Mater 11:2633–2656

    Article  Google Scholar 

  5. Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  6. Che S, Liu Z, Ohsuna T et al (2004) Synthesis and characterization of chiral mesoporous silica. Nature 429:281–284

    Article  Google Scholar 

  7. Na K, Jo C, Kim J et al (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333:328–332

    Article  Google Scholar 

  8. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

    Article  Google Scholar 

  9. Lee JS, Hirao A, Nakahama S (1988) Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules 21:274–276

    Article  Google Scholar 

  10. Lee JS, Hirao A, Nakahama S (1989) Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures. Macromolecules 22:2602–2606

    Article  Google Scholar 

  11. Bang J, Jeong U, Ryu DY et al (2009) Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater 21:4769–4792

    Article  Google Scholar 

  12. Hillmyer MA (2005) Nanoporous materials from block polymer precursors. Adv Polym Sci 190:137–181

    Article  Google Scholar 

  13. Gamys CG, Schumers JM, Mugemana C et al (2013) Pore-functionalized nanoporous materials derived from block copolymers. Macromol Rapid Commun 34:962–982

    Article  Google Scholar 

  14. Olson DA, Chen L, Hillmyer MA (2008) Templating nanoporous polymers with ordered block copolymers. Chem Mater 20:869–890

    Article  Google Scholar 

  15. Zhang Y, Sargent JL, Boudouris BW et al (2015) Nanoporous membranes generated from self-assembled block polymer precursors: Quo Vadis? J Appl Polym Sci 132:41683/1-17

    Google Scholar 

  16. Zalusky AS, Olayo-Valles R, Taylor CJ et al (2001) Mesoporous polystyrene monoliths. J Am Chem Soc 123:1519–1520

    Article  Google Scholar 

  17. Todd EM, Hillmyer MA (2011) Porous polymers from self-assembled structures. In: Silverstein MS, Cameron NR, Hillmyer MA (eds) Porous polymers. Wiley, Hoboken, NJ, pp 31–78

    Chapter  Google Scholar 

  18. Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38

    Article  Google Scholar 

  19. Hamley IW (1998) The physics of block copolymers. Oxford University Press Inc, New York

    Google Scholar 

  20. Semenov AN (1985) Contribution to the theory of microphase layering in block-copolymer melts. Sov Phys JETP 61:733–742

    Google Scholar 

  21. Zalusky AS, Olayo-Valles R, Wolf JH et al (2002) Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J Am Chem Soc 124:12761–12773

    Article  Google Scholar 

  22. Meuler AJ, Hillmyer MA, Bates FS (2009) Ordered network mesostructures in block polymer materials. Macromolecules 42:7221–7250

    Article  Google Scholar 

  23. Li L, Schulte L, Clausen LD et al (2011) Gyroid nanoporous membranes with tunable permeability. ACS Nano 5:7754–7766

    Article  Google Scholar 

  24. Baruth A, Seo M, Lin CH et al (2014) Optimization of long-range order in solvent vapor annealed poly(styrene)-block-poly(lactide) thin films for nanolithography. ACS Appl Mater Interfaces 6:13770–13781

    Article  Google Scholar 

  25. Uehara H, Yoshida T, Kakiage M et al (2006) Nanoporous polyethylene film prepared from bicontinuous crystalline/amorphous structure of block copolymer precursor. Macromolecules 39:3971–3974

    Article  Google Scholar 

  26. Seo M, Amendt MA, Hillmyer MA (2011) Cross-linked nanoporous materials from reactive and multifunctional block polymers. Macromolecules 44:9310–9318

    Article  Google Scholar 

  27. Muralidharan V, Hui CY (2004) Stability of nanoporous materials. Macromol Rapid Commun 25:1487–1490

    Article  Google Scholar 

  28. Cavicchi KA, Zalusky AS, Hillmyer MA et al (2004) An ordered nanoporous monolith from an elastomeric crosslinked block copolymer precursor. Macromol Rapid Commun 25:704–709

    Google Scholar 

  29. Chan VZH, Hoffman J, Lee VY et al (1999) Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286:1716–1719

    Article  Google Scholar 

  30. Liu G, Ding J, Guo A et al (1997) Potential skin layers for membranes with tunable nanochannels. Macromolecules 30:1851–1853

    Article  Google Scholar 

  31. Liu G, Ding J (1998) Diblock thin films with densely hexagonally packed nanochannels. Adv Mater 10:69–71

    Article  Google Scholar 

  32. Liu G, Ding J, Hashimoto T et al (1999) Thin films with densely, regularly packed nanochannels: preparation, characterization, and applications. Chem Mater 11:2233–2240

    Article  Google Scholar 

  33. Thurn-Albrecht T, Steiner R, DeRouchey J et al (2000) Nanoscopic templates from oriented block copolymer films. Adv Mater 12:787–791

    Article  Google Scholar 

  34. Sekine R, Sato N, Matsuyama T et al (2007) Radiation-induced fabrication of polymer nanoporous materials from microphase-separated structure of diblock copolymers as a template. J Polym Sci, Part A: Polym Chem 45:5916–5922

    Article  Google Scholar 

  35. Hansen MS, Vigild ME, Berg RH et al (2004) Nanoporous crosslinked polyisoprene from polyisoprene-polydimethylsiloxane block copolymer. Polym Bull 51:403–409

    Article  Google Scholar 

  36. Szewczykowski PP, Anderson K, Schulte L et al (2009) Elastomers with reversible nanoporosity. Macromolecules 42:5636–5641

    Article  Google Scholar 

  37. Schulte L, Grydgaard A, Jakobsen MR et al (2011) Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers. Polymer 52:422–429

    Article  Google Scholar 

  38. Guo F, Andreasen JW, Vigild ME et al (2007) Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers. Macromolecules 40:3669–3675

    Article  Google Scholar 

  39. Li L, Szewczykowski P, Clausen LD et al (2011) Ultrafiltration by gyroid nanoporous polymer membranes. J Membr Sci 384:126–135

    Article  Google Scholar 

  40. Jeong U, Ryu DY, Kim JK et al (2003) Volume contractions induced by crosslinking: a novel route to nanoporous polymer films. Adv Mater 15:1247–1250

    Article  Google Scholar 

  41. Okumura A, Nishikawa Y, Hashimoto T (2006) Nano-fabrication of double gyroid network structure via ozonolysis of matrix phase of polyisoprene in poly(2-vinylpyridine)-block-polyisoprene films. Polymer 47:7805–7812

    Article  Google Scholar 

  42. Drockenmuller E, Li LYT, Ryu DY et al (2005) Covalent stabilization of nanostructures: robust block copolymer templates from novel thermoreactive systems. J Polym Sci, Part A: Polym Chem 43:1028–1037

    Article  Google Scholar 

  43. Leiston-Belanger JM, Russell TP, Drockenmuller E et al (2005) A thermal and manufacturable approach to stabilized diblock copolymer templates. Macromolecules 38:7676–7683

    Article  Google Scholar 

  44. Harth E, Van Harn B, Lee VY et al (2002) A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J Am Chem Soc 124:8653–8660

    Article  Google Scholar 

  45. Amendt MA, Pitet LM, Moench S et al (2012) Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets. Polym Chem 3:1827–1837

    Article  Google Scholar 

  46. Chen L, Phillip WA, Cussler EL et al (2007) Robust nanoporous membranes templated by a doubly reactive block copolymer. J Am Chem Soc 129:13786–13787

    Article  Google Scholar 

  47. Amendt MA, Chen L, Hillmyer MA (2010) Formation of nanostructured poly(dicyclopentadiene) thermosets using reactive block polymers. Macromolecules 43:3924–3934

    Article  Google Scholar 

  48. Chen L, Hillmyer MA (2009) Mechanically and thermally robust ordered nanoporous monoliths using norbornene-functional block polymers. Macromolecules 42:4237–4243

    Article  Google Scholar 

  49. Seo M, Hillmyer MA (2014) RAFT copolymerization of acid chloride-containing monomers. Polym Chem 5:213–219

    Article  Google Scholar 

  50. Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83:81–150

    Article  Google Scholar 

  51. Seo M, Moll D, Silvis C et al (2014) Interfacial polymerization of reactive block polymers for the preparation of composite ultrafiltration membranes. Ind Eng Chem Res 53:18575–18579

    Google Scholar 

  52. Seo M, Hillmyer MA (2012) Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336:1422–1425

    Article  Google Scholar 

  53. Seo M, Murphy CJ, Hillmyer MA (2013) One-step synthesis of cross-linked block polymer precursor to a nanoporous thermoset. ACS Macro Lett 2:617–620

    Article  Google Scholar 

  54. Saba SA, Mousavi MPS, Bühlmann P et al (2015) Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation. J Am Chem Soc 137:8896–8899

    Article  Google Scholar 

  55. Seo M, Kim S, Oh J et al (2015) Hierarchically porous polymers from hyper-cross-linked block polymer precursors. J Am Chem Soc 137:600–603

    Article  Google Scholar 

  56. Zhang X, Shen S, Fan L (2007) Studies progress of preparation, properties and applications of hyper-cross-linked polystyrene networks. J Mater Sci 42:7621–7629

    Article  Google Scholar 

  57. Oh J, Seo M (2015) Photoinitiated polymerization-induced microphase separation for the preparation of nanoporous polymer films. ACS Macro Lett 4:1244–1248

    Article  Google Scholar 

  58. Meng Y, Gu D, Zhang F et al (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059

    Article  Google Scholar 

  59. Tanaka S, Nishiyama N, Egashira Y et al (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Commun 2125–2127

    Google Scholar 

  60. Kosonen H, Valkama S, Nykänen A et al (2006) Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Adv Mater 18:201–205

    Article  Google Scholar 

  61. Hu D, Xu Z, Zeng K et al (2010) From self-organized novolac resins to ordered nanoporous carbons. Macromolecules 43:2960–2969

    Article  Google Scholar 

  62. Zhang F, Meng Y, Gu D et al (2005) A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with \(Ia{\bar{\text{3}}}d\) Ia3d bicontinuous cubic structure. J Am Chem Soc 127:13508–13509

    Google Scholar 

  63. Liu Y, Ohnishi K, Sugimoto S et al (2014) Well-ordered mesoporous polymers and carbons based on imide-incorporated soft materials. Polym Chem 5:6452–6460

    Article  Google Scholar 

  64. Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853

    Article  Google Scholar 

  65. Wang Z, Guo L, Wang Y (2015) Isoporous membranes with gradient porosity by selective swelling of UV-crosslinked block copolymers. J Membr Sci 476:449–456

    Article  Google Scholar 

  66. Deng Y, Yu T, Wan Y et al (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc 129:1690–1697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungeun Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Seo, M. (2017). Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors. In: Bettotti, P. (eds) Submicron Porous Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53035-2_3

Download citation

Publish with us

Policies and ethics