Skip to main content

Carbon Gels and Their Applications: A Review of Patents

  • Chapter
  • First Online:
Submicron Porous Materials

Abstract

Carbon gels are highly versatile porous materials which properties can be tailored by the appropriate selection of the synthesis conditions. This feature confer them a great potential for a large number of applications, which has led to many researchers around the world to focus on the synthesis and applicability of carbon gels. Although a large number of scientific articles can be found in the literature, this chapter tries to seek to delve into the existing patents on the synthesis and applicability of carbon gels in order to elucidate (i) if the synthesis process of carbon gels is mature enough to be transferred to the industry, (ii) if carbon gels really have a wide sales market and (iii) if these materials can be offered at competitive prices. Moreover, a dissertation is made on patents focused in the applications of carbon gels in fields as diverse as energy storage applications, catalyst supports, coatings, or even cushion materials. This chapter shows the great versatility and great commercial potential of carbon gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvo EG, Arenillas A, Menéndez JÁ (2011) Designing nanostructured carbon xerogels. Intech Open Access Publisher

    Google Scholar 

  2. Rey-Raap N, Arenillas A, Menéndez JA (2015) Formaldehyde in the synthesis of resorcinol-formaldehyde carbon gels. In: Patton A (ed) Formaldehyde: synthesis, applications and potential health effects. Nova Science

    Google Scholar 

  3. Pekala RW (1989) Low density, resorcinol-formaldehyde aerogels. US patent 4873218

    Google Scholar 

  4. Droege MW (1999) Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same. US patent 5945084

    Google Scholar 

  5. Rey-Raap N, Menéndez JA, Arenillas A (2014) RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater 195:266–275

    Article  Google Scholar 

  6. Kaschmitter JL, Mayer ST, Pekala RW (1993) Supercapacitors based on carbon foams. US patent 5260855

    Google Scholar 

  7. Albert DF, Andrews GR, Bruno JW (2006) Organic, open cell foam materials, their carbonized derivatives, and methods for producing same. US patent 7005181

    Google Scholar 

  8. Feaver AM, Costantino HR, Varjian RD (2011) Mesoporous carbon materials comprising bifunctional catalysts. US patent 20110223494

    Google Scholar 

  9. Costantino HR, Feaver A, Scott WD (2013) Manufacturing methods for the production of carbon materials. US patent 10140094572 A1

    Google Scholar 

  10. Feaver A, Cao G (2010) Activated carbon cryogels and related methods. US patent 7723262

    Google Scholar 

  11. Geramita K, Kron B, Costantino HR, Feaver AM, Sakshaug AJ, Thompkins LA, Chang ATY (2013) Preparation of polymeric resins and carbon materials. US patent 20130280601

    Google Scholar 

  12. Rojas-Cervantes ML (2014) Some strategies to lower the production cost of carbon gels. J Mater Sci 50(3):1017–1040

    Article  Google Scholar 

  13. Mayer ST, Kaschmitter JL, Pekala RW (1995) Method of low pressure and/or evaporative drying of aerogel. US patent 5420168

    Google Scholar 

  14. Lee JK (2007) Organic aerogels reinforced with inorganic aerogel fillers. US patent 20070259979

    Google Scholar 

  15. Setoyama N, Kajino T, Takagi H, Asaoka T, Fukushima Y (2007) Carbon gel composite material. US patent 20070196659

    Google Scholar 

  16. Cooper JF, Tillotson TM, Hrubesh LW (2005) Aerogel and xerogel composites for use as carbon anodes. WO patent 2005101553 A2

    Google Scholar 

  17. Scherdel C, Reichenauer G (2012) Microporous and mesoporous carbon xerogel having a characteristic mesopore size and precursors thereof and also a process for producing these and their use. WO patent 2010000778 A1

    Google Scholar 

  18. Awadallah AF, Al-Muhtaseb SA (2014) Electrochemical polymerization process for preparation of crosslinked gel. US patent 8877826

    Google Scholar 

  19. Tonanon N, Wareenin Y, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2006) Preparation of resorcinol formaldehyde (RF) carbon gels: use of ultrasonic irradiation followed by microwave drying. J Non Cryst Solids 352:5683–5686

    Article  Google Scholar 

  20. Tonanon N, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2005) Mprovement of mesoporosity of carbon cryogels by ultrasonic irradiation. Carbon 43(3):525–531

    Article  Google Scholar 

  21. Zubizarreta Sáenz de Zaitegui L, Gómez Calvo E, Menéndez Díaz JÁ, Arenillas de la Puente A (2011) Procedimiento de obtención de xerogeles orgánicos de porosidad controlada. ES patent 2354782 A1

    Google Scholar 

  22. Calvo EG, Juarez-Perez EJ, Menendez JA, Arenillas A (2011) Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. J Colloid Interface Sci 357(2):541–547

    Article  Google Scholar 

  23. Juárez-Pérez EJ, Calvo EG, Arenillas A, Menéndez JA (2010) Precise determination of the point of sol–gel transition in carbon gel synthesis using a microwave heating method. Carbon 48(11):3305–3308

    Article  Google Scholar 

  24. Rey-Raap N, Menéndez JA, Arenillas A (2014) Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon 78:490–499

    Article  Google Scholar 

  25. W. Bell (2002) Mesoporous carbons and polymers. US patent 20020065333 A1

    Google Scholar 

  26. Pekala RW (1992) Melamine-formaldehyde aerogels. US patent 5081163

    Google Scholar 

  27. Pekala RW (1996) Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures. US patent 5556892

    Google Scholar 

  28. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer

    Google Scholar 

  29. Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44(11):2301–2307

    Article  Google Scholar 

  30. Rey-Raap N, Arenillas A, Menéndez JA (2016) A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater 223:89–93

    Article  Google Scholar 

  31. Carbon nanotube doped carbon gel catalyst for fuel cell and its application (2013). CN patent 102856562

    Google Scholar 

  32. Lamb LD, Huffman DR (1997) Aerogel/fullerene hybrid materials for energy storage applications. US patent 5698140

    Google Scholar 

  33. Pérez CAF, Moreno CC, Carrasco MF, Maldonado HF, Morales TS, Kapteijn F, Ros CH (2013) Doped carbon material for the electrocatalytic conversion of CO2 into hydrocarbons, uses of the material and conversion method using said material. WO patent 2013004882 A9

    Google Scholar 

  34. Maldonado HFJ, Pérez CAF, Jirglová H (2013) Method for obtaining doped carbon gels, gels thus obtained and use thereof as catalysts. WO patent 2012164128 A3

    Google Scholar 

  35. Job N, Lambert SD, Zubiaur A, Cao C, Pirard JP (2015) Design of Pt/carbon xerogel catalysts for PEM fuel cells. Catalysts 5(1):40–57

    Article  Google Scholar 

  36. Sakshaug A, Kron BE, Thompkins LA, Geramita K, Mcadie A, Costantino HR, Feaver AM (2014) High capacity hard carbon materials comprising efficiency enhancers. WO patent 2014201275 A2

    Google Scholar 

  37. Oil-absorbing aerogel and preparation method thereof (2014). CN patent 103752277

    Google Scholar 

  38. Graphene oxide reinforced carbon aerogel material, and preparation method and application thereof (2015). CN patent 103274384

    Google Scholar 

  39. Gallastegui AG, Shaffer M, Alyoubi AO, Basahel S (2013) Graphene and graphene oxide aerogels/xerogels for CO2 capture. WO patent 2013132259

    Google Scholar 

  40. Pauzauskie PJ, Worsley MA, Baumann TF, Satcher JH, Biener J (2012) Graphene aerogels. US patent 20120034442

    Google Scholar 

  41. Ratke LP (2004) Composite material used as a functional material in the construction of vehicles and aircraft, consists of fiber-reinforced plastic and/or carbon aerogels. DE patent 10300979 A1

    Google Scholar 

  42. Cherepy NJ, Jankowski AF, Tillotson TM, Fiet K (2006) Carbon aerogel and xerogel fuels for fuel cells and batteries. WO patent 2006025993 A2

    Google Scholar 

  43. Feaver A, Cao G (2010) Carbon-based foam nanocomposite hydrogen storage material. US patent 7816413

    Google Scholar 

  44. Long JW, Rolison DR, Baker W (2008) Sulfur-functionalized carbon nanoarchitectures as porous, high surface area supports for precious metal catalysts. US patent 7442747

    Google Scholar 

  45. Struthers RC (1994) Metal alloy laded carbon aerogel hydrogen hydride battery. US patent 5366828

    Google Scholar 

  46. Ayme-Perrot D, Dieudonné M, Sonntag P, Pasquier AC (2014) Sulphur-modified monolithic porous carbon-based material, process for the preparation thereof and uses thereof in the storage and release of energy. US patent 20120156567

    Google Scholar 

  47. Mager N, Meyer N, Léonard AF, Job N, Devillers M, Hermans S (2014) Functionalization of carbon xerogels for the preparation of palladium supported catalysts applied in sugar transformations. Appl Catal B 148–149:424–435

    Article  Google Scholar 

  48. Zapata-Benabihe Z, Moreno-Castilla C, Carrasco-Marín F (2014) Influence of the boron precursor and drying method on surface properties and electrochemical behavior of boron-doped carbon gels. Langmuir 30(6):1716–1722

    Article  Google Scholar 

  49. Kiciński W, Norek M, Jankiewicz BJ (2014) Heterogeneous carbon gels: n-doped carbon xerogels from resorcinol and n-containing heterocyclic aldehydes. Langmuir 30(47):14276–14285

    Article  Google Scholar 

  50. Rey-Raap N, Szczurek A, Fierro V, Celzard A, Menéndez JA, Arenillas A (2016) Advances in tailoring the porosity of tannin-based carbon xerogels. Ind Crops Prod 82:100–106

    Article  Google Scholar 

  51. Mayer ST, Pekala RW, Morrison RL, Kaschmitter JL (1994) Doping of carbon foams for use in energy storage devices. US patent 5358802

    Google Scholar 

  52. Nair VMP, Margolese D, Anz SJ, Wang S (2009) Nanoporous electrodes and related devices and methods. US patent 20090303660

    Google Scholar 

  53. Feaver AM, Cao G (2010) Electric double layer capacitance device. US patent 7835136

    Google Scholar 

  54. Mayer ST, Kaschmitter JL, Pekala RW (1997) Carbon aerogel electrodes for direct energy conversion. US patent 5601938

    Google Scholar 

  55. Schuth F, Bogdanovic B, Akira T (2006) Materials encapsulated in porous matrices for the reversible storage of hydrogen. US patent 20060264324

    Google Scholar 

  56. Coronado PR, Poco JF (2000) Flexible aerogel composite for mechanical stability and process of fabrication. US patent 6087407

    Google Scholar 

  57. Droege M, Downey S, Hrubesh L (2012) A coating composition for thermal protection on substrates, processes for manufacturing, and methods of applying same. EP patent 2440400 A1

    Google Scholar 

  58. Miller FS, Andresen BD (2005) Solid phase microextraction device using aerogel. US patent 6905031

    Google Scholar 

  59. Ratke L, Fricke J (2003) Precision casting and dead-mold casting in plastic/carbon aerogels. US patent 6599953

    Google Scholar 

  60. Petricevic R, Fricke J, Leuschner R, Lipinski M (2003) Gas diffusion electrode and its production. US patent 6503655

    Google Scholar 

  61. Gebhardt U, Leuschner R, Lipinski M, Waidhas M (2003) Method of discharging reaction water in PEM fuel cells and fuel cell for carrying out the method. US patent 6576358

    Google Scholar 

  62. Clavell RC (2004) Inner cushions for helmets. US patent 6704943

    Google Scholar 

  63. Branton P, Schuth F, Schwickardi M (2013) Smoke filtration. EP patent 2475272 B1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rey-Raap, N., Arenillas, A., Menéndez, J.A. (2017). Carbon Gels and Their Applications: A Review of Patents. In: Bettotti, P. (eds) Submicron Porous Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53035-2_2

Download citation

Publish with us

Policies and ethics