Skip to main content

Structured and Surface-Modified Carbon Xerogel Electrodes for Capacitive Deionization

  • Chapter
  • First Online:
  • 1231 Accesses

Abstract

The use of porous carbon materials for desalination and water treatment applications has been a heavily studied topic over the last few decades. In particular, the field of capacitive deionization (CDI) has become an increasingly popular method for the desalination of brackish water streams with carbon electrode design and porosity defined as key metrics in addition to operating parameters. In this chapter, carbon xerogel electrodes are reviewed and the effect porosity, surface charge, and the potential of zero charge are highlighted for their impact on the salt adsorption process. Ultimately, all of these parameters predict the desalination performance of a CDI cell, and assessments are made for future electrode needs in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pekala RW et al (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80

    Article  Google Scholar 

  2. Long JW et al (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15(3):780–785

    Article  Google Scholar 

  3. Lytle JC et al (2011) The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ Sci 4(5):1913–1925

    Article  Google Scholar 

  4. Bryning MB et al (2007) Carbon nanotube aerogels. Adv Mater 19(5):661–664

    Article  Google Scholar 

  5. Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228(1):10–29

    Article  Google Scholar 

  6. Anderson MA, Cudero AL, Palma J (2010) Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim Acta 55(12):3845–3856

    Article  Google Scholar 

  7. Porada S et al (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58(8):1388–1442

    Article  Google Scholar 

  8. Suss ME et al (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 8(8):2296–2319

    Article  Google Scholar 

  9. SALINE WATER CONVERSION (1960) Advances in chemistry, vol 27. American Chemical Society, p 264

    Google Scholar 

  10. Blair JW, Murphy GW (1960) Electrochemical demineralization of water with porous electrodes of large surface area, in SALINE WATER CONVERSION. American Chemical Society, pp 206–223

    Google Scholar 

  11. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227

    Article  Google Scholar 

  12. Wang J et al (1993) Carbon aerogel composite electrodes. Anal Chem 65(17):2300–2303

    Article  Google Scholar 

  13. Fricke J et al (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98

    Article  Google Scholar 

  14. Job N et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494

    Article  Google Scholar 

  15. Farmer JC et al (1996) Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc 143(1):159–169

    Article  Google Scholar 

  16. Farmer JC et al (1996) Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 26(10):1007–1018

    Article  Google Scholar 

  17. Farmer J, Fix D, Mack G (1995) Capacitive deionization of water: an innovative new process. In: Conference: 5. international conference on radioactive waste management and environmental remediation, Berlin (Germany), 3–9 Sep 1995; Other Information: PBD: 9 Jan 1995. 1995; Lawrence Livermore National Laboratory, CA (United States). Medium: ED; Size: 15 p

    Google Scholar 

  18. Farmer JC et al (1997) Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water. Energy Fuels 11(2):337–347

    Article  Google Scholar 

  19. Xu P et al (2008) Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res 42(10–11):2605–2617

    Article  Google Scholar 

  20. Kim T, Yoon J (2015) CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv 5(2):1456–1461

    Article  Google Scholar 

  21. Zhao R et al (2013) Optimization of salt adsorption rate in membrane capacitive deionization. Water Res 47(5):1941–1952

    Article  Google Scholar 

  22. Porada S et al (2012) Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl Mater Interf 4(3):1194–1199

    Article  Google Scholar 

  23. Li H et al (2010) Novel graphene-like electrodes for capacitive deionization. Environ Sci Technol 44(22):8692–8697

    Article  Google Scholar 

  24. Tsouris C et al (2011) Mesoporous carbon for capacitive deionization of saline water. Environ Sci Technol 45(23):10243–10249

    Article  Google Scholar 

  25. Biesheuvel PM, van Limpt B, van der Wal A (2009) Dynamic adsorption/desorption process model for capacitive deionization. J Phys Chem C 113(14):5636–5640

    Article  Google Scholar 

  26. Biesheuvel PM et al (2011) Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interf Sci 360(1):239–248

    Article  Google Scholar 

  27. Jeon S-I et al (2013) Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environ Sci 6(5):1471–1475

    Article  Google Scholar 

  28. Wimalasiri Y, Zou L (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471

    Article  Google Scholar 

  29. Yang J et al (2011) Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination 276(1–3):199–206

    Article  Google Scholar 

  30. Walker PJ, Mauter MS, Whitacre JF (2015) Electrodeposited MnO2 for pseudocapacitive deionization: relating deposition condition and electrode structure to performance. Electrochim Acta 182:1008–1018

    Article  Google Scholar 

  31. Suss ME et al (2012) Capacitive desalination with flow-through electrodes. Energy Environ Sci 5(11):9511–9519

    Article  Google Scholar 

  32. Landon J et al (2012) Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization. J Electrochem Soc 159(11):A1861–A1866

    Article  Google Scholar 

  33. Porada S et al (2013) Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 6(12):3700–3712

    Article  Google Scholar 

  34. Porada S et al (2012) Effect of electrode thickness variation on operation of capacitive deionization. Electrochim Acta 75:148–156

    Article  Google Scholar 

  35. Biesheuvel PM et al (2014) Attractive forces in microporous carbon electrodes for capacitive deionization. J Solid State Electrochem 18(5):1365–1376

    Article  Google Scholar 

  36. Biesheuvel PM, Fu Y, Bazant MZ (2012) Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russ J Electrochem 48(6):580–592

    Article  Google Scholar 

  37. Han L et al (2014) Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization. J Colloid Interf Sci 430:93–99

    Article  Google Scholar 

  38. Li L et al (2009) Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon 47(3):775–781

    Article  Google Scholar 

  39. Zou L et al (2008) Using mesoporous carbon electrodes for brackish water desalination. Water Res 42(8–9):2340–2348

    Article  Google Scholar 

  40. Baumann TF et al (2008) High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids 354(29):3513–3515

    Article  Google Scholar 

  41. Arnold BB, Murphy GW (1961) Studies on the electrochemistry of carbon and chemically-modified carbon surfaces. J Phys Chem 65(1):135–138

    Article  Google Scholar 

  42. Gao X et al Dependence of the capacitive deionization performance on potential of zero charge shifting of carbon xerogel

    Google Scholar 

  43. Electrodes during long-term operation (2014) J Electrochem Soc 161(12):E159–E166

    Article  Google Scholar 

  44. Omosebi A et al (2014) Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Appl Mater Interf 6(15):12640–12649

    Article  Google Scholar 

  45. Omosebi A et al (2015) Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs. J Colloid Interf Sci 446:345–351

    Article  Google Scholar 

  46. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley

    Google Scholar 

  47. Cohen I et al (2015) The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes. Electrochim Acta 153:106–114

    Article  Google Scholar 

  48. Gao X et al (2015) Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior. Energy Environ Sci 8(3):897–909

    Article  Google Scholar 

  49. Cohen I et al (2013) Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion. Electrochim Acta 106:91–100

    Article  Google Scholar 

  50. Cohen I et al (2013) Water desalination by capacitive deionization—advantages limitations and modification. ECS Trans 45(17):43–59

    Article  Google Scholar 

  51. Gao X et al (2016) Complementary surface charge for enhanced capacitive deionization. Water Res 92:275–282

    Article  Google Scholar 

  52. Gao X et al (2015) Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ Sci Technol 49(18):10920–10926

    Article  Google Scholar 

  53. Longhi M et al (2006) Preparation and characterization of aminated carbon from a single-step reaction. Chem Mater 18(17):4130–4136

    Article  Google Scholar 

  54. Bifeng P et al (2006) Growth of multi-amine terminated poly(amidoamine) dendrimers on the surface of carbon nanotubes. Nanotechnology 17(10):2483

    Article  Google Scholar 

  55. Vuković GD et al (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157(1):238–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Landon, J., Gao, X., Omosebi, A., Liu, K. (2017). Structured and Surface-Modified Carbon Xerogel Electrodes for Capacitive Deionization. In: Bettotti, P. (eds) Submicron Porous Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53035-2_1

Download citation

Publish with us

Policies and ethics