Skip to main content

Lagrangian Fronts and Coherent Structures Favorable for Fishery and Foraging Strategy of Top Marine Predators

  • Chapter
  • First Online:

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different values of Lagrangian indicators. They can be accurately detected in a given velocity field by computing different Lagrangian indicators for synthetic tracers. We report here our results on connection of the LFs with fishing grounds and catch locations. Imposing on the altimetry-based Lagrangian maps available catch data on Pacific saury and neon flying squid in the region of the North Western Pacific with one of the richest fisheries in the world, it is shown that the LFs could serve as a new indicator for potential fishing grounds. It is shown statistically that the catch locations are not randomly distributed over the region but concentrated mainly along the strong LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio eddies converge. Electronic tagging and tracking of marine animals and seabirds provides a new source of information on their foraging behavior and its relationship with the marine environment. It is discussed how some top marine predators as great frigates, elephant seals, and Mediterranean fin whales could be able to track somehow mesoscale and submesoscale Lagrangian coherent structures (LCSs) and use them in the foraging strategy and to feed on. Possible biophysical reasons for aggregation of food near strong LFs and LCSs are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alabia, I.D., Saitoh, S.I., Mugo, R., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T., Seito, M.: Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fish. Oceanogr. 24 (2), 190–203 (2015). 10.1111/fog.12102

    Article  Google Scholar 

  2. Bakun, A.: Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci. Mar. 70 (S2), 105–122 (2006). 10.3989/scimar.2006.70s2105

    Article  Google Scholar 

  3. Belkin, I.M., Cornillon, P.C., Sherman, K.: Fronts in large marine ecosystems. Prog. Oceanogr. 81 (1–4), 223–236 (2009). 10.1016/j.pocean.2009.04.015

    Article  ADS  Google Scholar 

  4. Chen, X., Tian, S., Guan, W.: Variations of oceanic fronts and their influence on the fishing grounds of Ommastrephes bartramii in the Northwest Pacific. Acta Oceanol. Sin. 33 (4), 45–54 (2014). 10.1007/s13131-014-0452-3

    Article  Google Scholar 

  5. Cotte, C., d’Ovidio, F., Chaigneau, A., Levy, M., Taupier-Letage, I., Mate, B., Guinet, C.: Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol. Oceanogr. 56 (1), 219–232 (2010). 10.4319/lo.2011.56.1.0219

    Article  Google Scholar 

  6. Cotté, C., d’Ovidio, F., Dragon, A.C., Guinet, C., Lévy, M.: Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog. Oceanogr. 131, 46–58 (2015). 10.1016/j.pocean.2014.11.011

    Article  Google Scholar 

  7. De Monte, S., Cotte, C., d’Ovidio, F., Levy, M., Le Corre, M., Weimerskirch, H.: Frigatebird behaviour at the ocean-atmosphere interface: integrating animal behaviour with multi-satellite data. J. R. Soc. Interface 9 (77), 3351–3358 (2012). 10.1098/rsif.2012.0509

    Article  Google Scholar 

  8. d’Ovidio, F., De Monte, S., Penna, A.D., Cotté, C., Guinet, C.: Ecological implications of eddy retention in the open ocean: a Lagrangian approach. J. Phys. A Math. Theor. 46 (25), 254023 (2013). 10.1088/1751-8113/46/25/254023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fan, W., Wu, Y., Cui, X.: The study on fishing ground of neon flying squid, Ommastrephes bartrami, and ocean environment based on remote sensing data in the Northwest Pacific Ocean. Chin. J. Oceanol. Limnol. 27 (2), 408–414 (2009). 10.1007/s00343-009-9107-1

    Article  ADS  Google Scholar 

  10. Fedorov, K.N.: The Physical Nature and Structure of Oceanic Fronts. Lecture Notes on Coastal and Estuarine Studies, vol. 19. Springer, Berlin (1986). 10.1029/ln019

  11. Filatov, V.N.: Pacific saury migrations in the areas of the Kuril Islands and the Sea of Okhotsk. In: Proceedings of the 20th International Symposium on Okhotsk Sea and Sea Ice, pp. 257–260 (2005)

    Google Scholar 

  12. Fukushima, S.: Synoptic analysis of migration and fishing conditions of saury in the northwest Pacific Ocean. Bull. Tohoku Reg. Fish. Res. Lab. 4, 1–70 (1979) [in Japanese, English abstract]

    Google Scholar 

  13. Isoguchi, O., Kawamura, H., Oka, E.: Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J. Geophys. Res. Oceans 111 (C10), C10003 (2006). 10.1029/2005jc003402

    Article  ADS  Google Scholar 

  14. Ito, S.I., Wagawa, T., Kakehi, S., Okunishi, T., Hasegawa, D.: Importance of advection to form a climate and ecological hotspot in the western North Pacific. In: Proceedings of 3rd International Symposium on Effects of Climate Change on the World’s Oceans, March 23–27, 2015, Santos City, Brazil (2015)

    Google Scholar 

  15. Kosaka, S.: Relation of the migration of pacific sauries to oceanic fronts in the northwest pacific ocean. INPFC Bull. 47, 229–246 (1986). http://www.npafc.org/new/inpfc/INPFC%20Bulletin/Bull%20No.47/Bulletin47.pdf

    Google Scholar 

  16. Labat, J.P., Gasparini, S., Mousseau, L., Prieur, L., Boutoute, M., Mayzaud, P.: Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an optical plankton counter: relationships with environmental structures. Deep-Sea Res. I Oceanogr. Res. Pap. 56 (10), 1742–1756 (2009). 10.1016/j.dsr.2009.05.013

    Article  ADS  Google Scholar 

  17. Lutjeharms, J.R.E.: The coastal oceans of South-Eastern Africa. The Sea: Ideas and Observations on Progress in the Study of Seas. Interdisciplinary Regional Studies and Syntheses, vol. 14, pp. 783–834. Harvard University Press, Cambridge (2006)

    Google Scholar 

  18. Monin, A.S., Krasitsky, V.P.: Phenomena on the Ocean Surface. Gidrometeoizdat, Leningrad (1985)

    Google Scholar 

  19. Nishikawa, H., Toyoda, T., Masuda, S., Ishikawa, Y., Sasaki, Y., Igarashi, H., Sakai, M., Seito, M., Awaji, T.: Wind-induced stock variation of the neon flying squid (Ommastrephes bartramii) winter-spring cohort in the subtropical North Pacific Ocean. Fish. Oceanogr. 24 (3), 229–241 (2015). 10.1111/fog.12106

    Article  Google Scholar 

  20. Olson, D., Hitchcock, G., Mariano, A., Ashjian, C., Peng, G., Nero, R., Podesta, G.: Life on the edge: marine life and fronts. Oceanography 7 (2), 52–60 (1994). 10.5670/oceanog.1994.03

    Article  Google Scholar 

  21. Owen, R.W.: Fronts and eddies in the sea: mechanisms, interactions and biological effects. In: Longhurst, A.R. (ed.) Analysis of Marine Ecosystems, pp. 197–233. Academic Press, London (1981)

    Google Scholar 

  22. Perruche, C., Rivière, P., Lapeyre, G., Carton, X., Pondaven, P.: Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence. J. Mar. Res. 69 (1), 105–135 (2011). 10.1357/002224011798147606

    Article  Google Scholar 

  23. Prants, S.V.: Dynamical systems theory methods to study mixing and transport in the ocean. Phys. Scr. 87 (3), 038115 (2013). 10.1088/0031-8949/87/03/038115

    Article  ADS  Google Scholar 

  24. Prants, S.V.: Chaotic Lagrangian transport and mixing in the ocean. Eur. Phys. J. Spec. Top. 223 (13), 2723–2743 (2014). 10.1140/epjst/e2014-02288-5

    Article  Google Scholar 

  25. Prants, S.V., Budyansky, M.V., Uleysky, M.Y.: Identifying Lagrangian fronts with favourable fishery conditions. Deep-Sea Res. I Oceanogr. Res. Pap. 90, 27–35 (2014). 10.1016/j.dsr.2014.04.012

    Article  ADS  Google Scholar 

  26. Prants, S.V., Budyansky, M.V., Uleysky, M.Y.: Lagrangian fronts in the ocean. Izv. Atmos. Oceanic Phys. 50 (3), 284–291 (2014). 10.1134/s0001433814030116

    Article  ADS  MATH  Google Scholar 

  27. Prants, S.V., Budyansky, M.V., Uleysky, M.Y., Zaslavsky, G.M.: Chaotic mixing and transport in a meandering jet flow. Chaos 16 (3), 033117 (2006). 10.1063/1.2229263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Prants, S.V., Uleysky, M.Y., Budyansky, M.V.: Lagrangian coherent structures in the ocean favorable for fishery. Dokl. Earth Sci. 447 (1), 1269–1272 (2012). 10.1134/S1028334X12110062

    Article  ADS  Google Scholar 

  29. Qiu, B.: Kuroshio and Oyashio currents. In: Steele, J.H. (ed.) Encyclopedia of Ocean Sciences, 2nd edn., pp. 358–369. Academic Press, Oxford (2001). 10.1016/B978-012374473-9.00350-7

    Chapter  Google Scholar 

  30. Saitoh, S., Kosaka, S., Iisaka, J.: Satellite infrared observations of Kuroshio warm-core rings and their application to study of Pacific saury migration. Deep Sea Res. Part A 33 (11–12), 1601–1615 (1986). 10.1016/0198-0149(86)90069-5

    Article  ADS  Google Scholar 

  31. Sakurai, Y.: An overview of the Oyashio ecosystem. Deep-Sea Res. II Top. Stud. Oceanogr. 54 (23–26), 2526–2542 (2007). 10.1016/j.dsr2.2007.02.007

    Article  ADS  Google Scholar 

  32. Samko, E.V., Bulatov, N.V., Nikitin, A.A., Muktepavel, L.S., Kapshiter, A.V.: Results of remote sensing data using for maintenance of fishery in the Far-Eastern Seas. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 7 (2), 209–220 (2010)

    Google Scholar 

  33. Schouten, M.W., de Ruijter, W.P., van Leeuwen, P.J., Ridderinkhof, H.: Eddies and variability in the Mozambique channel. Deep-Sea Res. II Top. Stud. Oceanogr. 50 (12–13), 1987–2003 (2003). 10.1016/s0967-0645(03)00042-0

    Article  ADS  Google Scholar 

  34. Sugimoto, T., Tameishi, H.: Warm-core rings, streamers and their role on the fishing ground formation around Japan. Deep Sea Res. Part A 39, S183–S201 (1992). 10.1016/S0198-0149(11)80011-7

    Article  ADS  Google Scholar 

  35. Tew Kai, E., Marsac, F.: Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique channel. Prog. Oceanogr. 86 (1–2), 214–223 (2010). 10.1016/j.pocean.2010.04.010

    Article  ADS  Google Scholar 

  36. Tew Kai, E., Rossi, V., Sudre, J., Weimerskirch, H., Lopez, C., Hernandez-Garcia, E., Marsac, F., Garçon, V.: Top marine predators track Lagrangian coherent structures. Proc. Natl. Acad. Sci. 106 (20), 8245–8250 (2009). 10.1073/pnas.0811034106

    Article  ADS  Google Scholar 

  37. Uda, M.: Researches on “Siome” or current rip in the seas and oceans. Geophys. Mag. 11, 307–372 (1938)

    Google Scholar 

  38. Uleysky, M.Y., Budyansky, M.V., Prants, S.V.: Effect of dynamical traps on chaotic transport in a meandering jet flow. Chaos 17 (4), 043105 (2007). 10.1063/1.2783258

    Article  ADS  MATH  Google Scholar 

  39. Wang, W., Shao, Q.: The spatial relationship between the distribution of Ommastrephes bartrami and marine environment in the western North Pacific Ocean. In: ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), October 14–16, 2005, Hangzhou, China, pp. 177–182 (2005)

    Google Scholar 

  40. Weimerskirch, H., Le Corre, M., Jaquemet, S., Potier, M., Marsac, F.: Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique channel. Mar. Ecol. Prog. Ser. 275, 297–308 (2004). 10.3354/meps275297

    Article  Google Scholar 

  41. Yasuda, I., Kitagawa, D.: Locations of early fishing grounds of saury in the northwestern Pacific. Fish. Oceanogr. 5 (1), 63–69 (1996). 10.1111/j.1365-2419.1996.tb00018.x

    Article  Google Scholar 

List of Internet Resources

  1. Animation of daily Lagrangian maps in 2002 with the saury catch locations. http://dynalab.poi.dvo.ru/data/GRL12/2002

  2. NASA Ocean Color. http://oceancolor.gsfc.nasa.gov/cms/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prants, S.V., Uleysky, M.Y., Budyansky, M.V. (2017). Lagrangian Fronts and Coherent Structures Favorable for Fishery and Foraging Strategy of Top Marine Predators. In: Lagrangian Oceanography. Physics of Earth and Space Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-53022-2_8

Download citation

Publish with us

Policies and ethics