Skip to main content

Atherosclerotic Plaque Imaging

  • Chapter
  • First Online:
  • 1116 Accesses

Abstract

Cardiovascular diseases (CVD) remain the leading cause of death in western societies and developing countries despite improvements in prevention, diagnosis and treatment. Coronary artery disease (CAD) and myocardial infarction (MI) account for more than 50% of CVD deaths and are the result of coronary atherosclerosis and plaque rupture and subsequent thrombosis. Thus, early detection of biological processes associated with atherosclerosis progression and plaque instability may improve patient risk stratification and treatment guidance. Motivated by the great clinical potential of coronary plaque imaging tremendous advances in imaging technology and contrast agent design have been made in the last decade and have allowed to assess coronary plaque burden, composition and biological activity with several non-invasive imaging modalities including magnetic resonance imaging (MRI), computer tomography (CT) and positron emission tomography (PET), mostly in small proof-of-concept single center clinical studies. In this book chapter, we will discuss the recent advances in both, established and emerging imaging modalities, highlighting the potential of molecular MRI for imaging atherosclerotic disease in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

18F–FDG:

[18F] fluorodeoxyglucose

18F–FDM:

[18F] fluorodeoxymannose

18F-NaF:

18F-sodium-fluoride

64Cu-TNP:

64Cu-labeled triple reporter nanoparticle

89Zr-DNP:

89Zr labelled dextran nanoparticles

α-act:

Alpha – actin

a.u.:

Arbitrary units

ACS:

Acute coronary syndrome

AM:

Acute marginal branch

Ao:

Aorta

ApoE:

Apolipoprotein E

Arg:

Arginine

Asp:

Aspartic

Au:

Gold

AV:

Atrioventricular node branch

B0:

Static magnetic field

B1:

Oscillating magnetic field

CAD:

Coronary artery disease

CD206:

Mannose receptor

CE-CMR:

Contrast-enhanced cardiac magnetic resonance

CE-MRA:

Contrast-enhanced magnetic resonance angiography

CMRA:

Cardiac magnetic resonance angiography

CMRI:

Cardiac magnetic resonance imaging

CNR:

Contrast-to-noise ratio

CT:

Computer tomography

CTA:

Computer tomography angiography

Cu:

Copper

CVD:

Cardiovascular diseases

DCE-MRI:

Dynamic contrast-enhanced – magnetic resonance imaging

DE-MRI:

Delayed-enhanced magnetic resonance imaging

DI:

First-order diagonal branch vessel

DTPA:

Diethylenetriaminepentaacetic acid

EC:

Endothelial cell

ECM:

Extracellular matrix

ESMA:

Elastin-specific gadolinium-based contrast agent

F:

Fluor

FD-OCT:

Frequency domain – optical coherence tomography

FFR:

Fractional flow reverse

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

Gd:

Gadolinium

Gly:

Glycine

HDL:

High density lipoprotein

HFD:

High fat diet

ICAM-1:

Intercellular cell adhesion molecule 1

IEL:

Internal elastic lamina

IVUS:

Intravascular ultrasonography

IVUS-VH:

Intravascular ultrasonography – virtual histology

LAD:

Left anterior descending artery

LCX:

Left circumflex artery

LDL:

Low density lipoprotein

LDLR:

Low density lipoprotein receptor

LGE:

Late gadolinium-enhancement

LM:

Left main coronary artery

LOX-1:

Lysyl oxidase 1

LV:

Left ventricle

M1:

Classically-activated or pro-inflammatory macrophages

M2:

Alternatively- activated or resolving macrophages

MDCT:

Cardiac magnetic computed tomography

MI:

Myocardial infarction

MMPs:

Matrix metalloproteinases

MPO:

Myeloperoxidase

MR:

Magnetic resonance

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MTC:

Magnetization transfer contrast

Mxy:

Transverse magnetization

Mz:

Longitudinal magnetization

Mz0:

Equilibrium magnetization

Na:

Sodium

NIFS:

Near infrared fluorescence spectroscopy

NMR:

Nuclear magnetic resonance

OCT:

Optical coherence tomography

oxLDL:

Oxidized low density lipoprotein

PBR:

Benzodiazepine receptor

PC:

Phase contrast

PCI:

Percutaneous coronary intervention

PECAM-1:

Platelet endothelial cell adhesion molecule 1

PET:

Positron emission tomography

PET-CT:

Positron emission tomography – computer tomography

PET-MRI:

Positron emission tomography – magnetic resonance imaging

QCA:

Quantitative coronary angiography

RCA:

Right coronary artery

RF:

Radio frequency

RGD:

Arginine – glycine – aspartic

RV:

Right ventricle

SD:

Standard deviation

SGM:

Susceptibility gradient mapping

SNR:

Signal-to-noise ratio

SPIR:

Spectral presaturation with inversion recovery

SR-AI:

Scavenger receptor type A member I

SSFP:

Steady state free precession

STIR:

Short tau inversion recovery

SUV:

Standard uptake value

TEM:

Transmission electron microscopy

TOF:

Time-of-flight

TV:

Total variation

V:

Vacuole

VCAM-1:

Vascular cell adhesion molecule 1

VSMCs:

Vascular smooth muscle cells

Zr:

Zirconium

References

  1. Writing Group, M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–60.

    Article  Google Scholar 

  2. Sacco RL. The new American Heart Association 2020 goal: achieving ideal cardiovascular health. J Cardiovasc Med (Hagerstown). 2011;12(4):255–7.

    Article  Google Scholar 

  3. Pijls NH, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  CAS  PubMed  Google Scholar 

  4. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–16.

    Article  CAS  PubMed  Google Scholar 

  5. Asrar Ul Haq M, et al. The invasive assessment of coronary atherosclerosis and stents using optical coherence tomography: a clinical update. Heart Asia. 2013;5(1):154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vinegoni C, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3(84):84ra45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Glagov S, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.

    Article  CAS  PubMed  Google Scholar 

  8. Ali ZA, et al. Increased thin-cap neoatheroma and periprocedural myocardial infarction in drug-eluting stent restenosis: multimodality intravascular imaging of drug-eluting and bare-metal stents. Circ Cardiovasc Interv. 2013;6(5):507–17.

    Article  CAS  PubMed  Google Scholar 

  9. Madder RD, Wohns DH, Muller JE. Detection by intracoronary near-infrared spectroscopy of lipid core plaque at culprit sites in survivors of cardiac arrest. J Invasive Cardiol. 2014;26(2):78–9.

    PubMed  Google Scholar 

  10. Motoyama S, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  11. de Boer SP, et al. Determinants of high cardiovascular risk in relation to plaque-composition of a non-culprit coronary segment visualized by near-infrared spectroscopy in patients undergoing percutaneous coronary intervention. Eur Heart J. 2014;35(5):282–9.

    Article  PubMed  CAS  Google Scholar 

  12. Wykrzykowska J, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–8.

    Article  PubMed  Google Scholar 

  13. Joshi NV, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13.

    Article  PubMed  Google Scholar 

  14. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  15. Miao C, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53(18):1708–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gerretsen SC, et al. Visualization of coronary wall atherosclerosis in asymptomatic subjects and patients with coronary artery disease using magnetic resonance imaging. PLoS One. 2010;5(9):e12998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

    Article  PubMed  Google Scholar 

  18. Schar M, et al. The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging. 2003;17(5):538–44.

    Article  PubMed  Google Scholar 

  19. Kim WY, et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation. 2007;115(2):228–35.

    Article  PubMed  Google Scholar 

  20. Skalen K, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417(6890):750–4.

    Article  CAS  PubMed  Google Scholar 

  21. Bentzon JF, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi T, et al. High-intensity signals in carotid plaques on T1-weighted magnetic resonance imaging predict coronary events in patients with coronary artery disease. J Am Coll Cardiol. 2011;58(4):416–22.

    Article  PubMed  Google Scholar 

  23. Tanaka A, et al. Hyperintense plaque with noncontrast T1-weighted magnetic resonance coronary plaque imaging leading to acute coronary syndrome. Circulation. 2009;120(23):2400–1.

    Article  PubMed  Google Scholar 

  24. Jansen CH, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124(4):416–24.

    Article  CAS  PubMed  Google Scholar 

  25. Ehara S, et al. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur Heart J Cardiovasc Imaging. 2012;13(5):394–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hays AG, et al. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56(20):1657–65.

    Article  PubMed  Google Scholar 

  27. Hays AG, et al. Regional coronary endothelial function is closely related to local early coronary atherosclerosis in patients with mild coronary artery disease: pilot study. Circ Cardiovasc Imaging. 2012;5(3):341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    Google Scholar 

  29. Brown AJ, et al. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13(4):210–20.

    Article  PubMed  Google Scholar 

  30. Stary HC, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462–78.

    Article  CAS  PubMed  Google Scholar 

  31. Nossaman BD, et al. History of right heart catheterization: 100 years of experimentation and methodology development. Cardiol Rev. 2010;18(2):94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls SJ, et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55(21):2399–407.

    Article  PubMed  Google Scholar 

  34. Nair A, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106(17):2200–6.

    Article  PubMed  Google Scholar 

  35. Granada JF, et al. In vivo plaque characterization using intravascular ultrasound-virtual histology in a porcine model of complex coronary lesions. Arterioscler Thromb Vasc Biol. 2007;27(2):387–93.

    Article  CAS  PubMed  Google Scholar 

  36. Swanson EA, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18(21):1864–6.

    Article  CAS  PubMed  Google Scholar 

  37. Roleder T, et al. The basics of intravascular optical coherence tomography. Postepy Kardiol Interwencyjnej. 2015;11(2):74–83.

    PubMed  PubMed Central  Google Scholar 

  38. Kubo T, et al. Assessment of coronary atherosclerosis using optical coherence tomography. J Atheroscler Thromb. 2014;21(9):895–903.

    Article  PubMed  Google Scholar 

  39. Kubo T, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6(10):1095–104.

    Article  PubMed  Google Scholar 

  40. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–7.

    Article  CAS  PubMed  Google Scholar 

  41. Leber AW, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47(3):672–7.

    Article  PubMed  Google Scholar 

  42. Ovrehus KA, et al. Reproducibility of semi-automatic coronary plaque quantification in coronary CT angiography with sub-mSv radiation dose. J Cardiovasc Comput Tomogr. 2016;10(2):114–20.

    Article  PubMed  Google Scholar 

  43. Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol. 2014;21(6):1112–28; quiz 1129.

    Google Scholar 

  44. Polonsky TS, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agatston AS, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  46. Pletcher MJ, et al. Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med. 2004;164(12):1285–92.

    Article  PubMed  Google Scholar 

  47. New SE, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Otsuka F, et al. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kelly-Arnold A, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013;110(26):10741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irkle A, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rogers IS, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3(4):388–97.

    Google Scholar 

  52. Aikawa E, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.

    Article  CAS  PubMed  Google Scholar 

  53. Maurovich-Horvat P, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5(12):1243–52.

    Article  PubMed  Google Scholar 

  54. Kashiwagi M, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2(12):1412–9.

    Article  PubMed  Google Scholar 

  55. Virmani R, et al. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol. 2003;16(3):267–72.

    Article  PubMed  Google Scholar 

  56. Nezafat M, et al. Coronary MR angiography at 3 T: fat suppression versus water-fat separation. MAGMA. 2016;29:733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stuber M, et al. Free-breathing black-blood coronary MR angiography: initial results. Radiology. 2001;219(1):278–83.

    Article  CAS  PubMed  Google Scholar 

  58. Dweck MR, et al. MR imaging of coronary arteries and plaques. JACC Cardiovasc Imaging. 2016;9(3):306–16.

    Article  PubMed  Google Scholar 

  59. Piccini D, et al. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med. 2016.

    Google Scholar 

  60. Cines DB, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    CAS  PubMed  Google Scholar 

  61. Caravan P, et al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124(12):3152–62.

    Article  CAS  PubMed  Google Scholar 

  62. Caravan P, et al. Gadolinium(III) Chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    Article  CAS  PubMed  Google Scholar 

  63. Phinikaridou A, et al. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation. 2012;126(6):707–19.

    Article  CAS  PubMed  Google Scholar 

  64. Phinikaridou A, et al. Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc. 2013;2(5):e000402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lobbes MB, et al. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model – comparison of gadofosveset and gadopentetate dimeglumine. Radiology. 2009;250(3):682–91.

    Article  PubMed  Google Scholar 

  66. Cornily JC, et al. Evaluation of neovessels in atherosclerotic plaques of rabbits using an albumin-binding intravascular contrast agent and MRI. J Magn Reson Imaging. 2008;27(6):1406–11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lavin B, et al. Monitoring vascular permeability and remodeling after endothelial injury in a murine model using a magnetic resonance albumin-binding contrast agent. Circ Cardiovasc Imaging. 2015:8(4).

    Google Scholar 

  68. Pedersen SF, et al. CMR assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset. J Cardiovasc Magn Reson. 2011;13:10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lobbes MB, et al. Gadofosveset-enhanced magnetic resonance imaging of human carotid atherosclerotic plaques: a proof-of-concept study. Investig Radiol. 2010;45(5):275–81.

    Article  Google Scholar 

  70. McAteer MA, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  71. Nahrendorf M, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11.

    Article  CAS  PubMed  Google Scholar 

  72. Michalska M, et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012;32(10):2350–7.

    Article  CAS  PubMed  Google Scholar 

  73. Villanueva FS, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation. 1998;98(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  74. Paulis LE, et al. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J Nanomater. 2012;10:25.

    CAS  Google Scholar 

  75. Pello OM, et al. A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology. 2011;216(11):1172–6.

    Article  CAS  PubMed  Google Scholar 

  76. Sirol M, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004;109(23):2890–6.

    Article  CAS  PubMed  Google Scholar 

  77. Chen W, et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging. 2008;3(6):233–42.

    Article  CAS  PubMed  Google Scholar 

  78. Li D, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging. 2010;3(4):464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sluimer JC, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53(17):1517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kolodgie FD, et al. Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol. 2007;49(21):2093–101.

    Article  CAS  PubMed  Google Scholar 

  81. Russell DA, Abbott CR, Gough MJ. Vascular endothelial growth factor is associated with histological instability of carotid plaques. Br J Surg. 2008;95(5):576–81.

    Article  CAS  PubMed  Google Scholar 

  82. Virmani R, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.

    Article  CAS  PubMed  Google Scholar 

  83. Wasserman BA, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology. 2002;223(2):566–73.

    Article  PubMed  Google Scholar 

  84. Wasserman BA, et al. Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imaging. 2005;21(1):91–5.

    Article  PubMed  Google Scholar 

  85. Yuan C, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002;15(1):62–7.

    Article  PubMed  Google Scholar 

  86. Cai J, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.

    Article  PubMed  Google Scholar 

  87. Calcagno C, et al. Reproducibility of black blood dynamic contrast-enhanced magnetic resonance imaging in aortic plaques of atherosclerotic rabbits. J Magn Reson Imaging. 2010;32(1):191–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kerwin W, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation. 2003;107(6):851–6.

    Article  PubMed  Google Scholar 

  89. Kerwin WS, et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kerwin WS, et al. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med. 2008;59(3):507–14.

    Article  CAS  PubMed  Google Scholar 

  91. Calcagno C, et al. Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler Thromb Vasc Biol. 2008;28(7):1311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med. 2012;16(9):1978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Purushothaman KR, et al. Atherosclerosis neovascularization and imaging. Curr Mol Med. 2006;6(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  94. Winter PM, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108(18):2270–4.

    Article  CAS  PubMed  Google Scholar 

  95. Cai K, et al. MR molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging. 2010;3(8):824–32.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ruehm SG, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103(3):415–22.

    Article  CAS  PubMed  Google Scholar 

  97. Durand E, et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res. 2007;44(2):119–28.

    Article  CAS  PubMed  Google Scholar 

  98. Morishige K, et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122(17):1707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmitz SA, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Investig Radiol. 2000;35(8):460–71.

    Article  CAS  Google Scholar 

  100. Sigovan M, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252(2):401–9.

    Article  PubMed  Google Scholar 

  101. Smith BR, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices. 2007;9(5):719–27.

    Article  PubMed  Google Scholar 

  102. Makowski MR, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE−/− mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4(3):295–303.

    Article  PubMed  Google Scholar 

  103. Kooi ME, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–8.

    Article  CAS  PubMed  Google Scholar 

  104. Tang TY, et al. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology. 2009;51(7):457–65.

    Article  CAS  PubMed  Google Scholar 

  105. Tang TY, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.

    Article  CAS  PubMed  Google Scholar 

  106. Tang TY, et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis. 2008;196(2):879–87.

    Article  CAS  PubMed  Google Scholar 

  107. Trivedi RA, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol. 2006;26(7):1601–6.

    Article  CAS  PubMed  Google Scholar 

  108. Korosoglou G, et al. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J Am Coll Cardiol. 2008;52(6):483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Flogel U, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118(2):140–8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Amirbekian V, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104(3):961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamakoshi Y, et al. LDL-based nanoparticles for contrast enhanced MRI of atheroplaques in mouse models. Chem Commun (Camb). 2011;47(31):8835–7.

    Article  CAS  Google Scholar 

  112. Frias JC, et al. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc. 2004;126(50):16316–7.

    Article  CAS  PubMed  Google Scholar 

  113. Frias JC, et al. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett. 2006;6(10):2220–4.

    Article  CAS  PubMed  Google Scholar 

  114. Cormode DP, et al. Comparison of synthetic high density lipoprotein (HDL) contrast agents for MR imaging of atherosclerosis. Bioconjug Chem. 2009;20(5):937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jaffer FA, et al. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging. 2006;5(2):85–92.

    PubMed  Google Scholar 

  116. Tait JF. Imaging of apoptosis. J Nucl Med. 2008;49(10):1573–6.

    Article  PubMed  Google Scholar 

  117. van Tilborg GA, et al. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem. 2010;21(10):1794–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb. 2003;10(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  119. von Bary C, et al. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging. 2011;4(2):147–55.

    Article  Google Scholar 

  120. Makowski MR, et al. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Investig Radiol. 2012;47(7):438–44.

    Article  CAS  Google Scholar 

  121. Makowski MR, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  122. Phinikaridou A, et al. Vascular remodeling and plaque vulnerability in a rabbit model of atherosclerosis: comparison of delayed-enhancement MR imaging with an elastin-specific contrast agent and unenhanced black-blood MR imaging. Radiology. 2014;271(2):390–9.

    Article  PubMed  Google Scholar 

  123. Motoyama S, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.

    Article  PubMed  Google Scholar 

  124. Stone GW, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  125. Caravan P, et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Eng. 2007;46(43):8171–3.

    Article  CAS  Google Scholar 

  126. Helm PA, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008;247(3):788–96.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chen W, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging. 2013;6(3):373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  129. Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med. 2007;17(8):253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lancelot E, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol. 2008;28(3):425–32.

    Article  CAS  PubMed  Google Scholar 

  131. Hyafil F, et al. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J. 2011;32(12):1561–71.

    Article  PubMed  Google Scholar 

  132. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102–11.

    Article  CAS  PubMed  Google Scholar 

  133. Ronald JA, et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120(7):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tavora F, et al. Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology. 2010;42(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  135. Flacke S, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104(11):1280–5.

    Article  CAS  PubMed  Google Scholar 

  136. Botnar RM, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004;110(11):1463–6.

    Article  PubMed  Google Scholar 

  137. Botnar RM, et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation. 2004;109(16):2023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Spuentrup E, et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation. 2005;111(11):1377–82.

    Article  CAS  PubMed  Google Scholar 

  139. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    Article  CAS  PubMed  Google Scholar 

  140. Spuentrup E, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol. 2008;18(9):1995–2005.

    Article  PubMed  Google Scholar 

  141. Vymazal J, et al. Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Investig Radiol. 2009;44(11):697–704.

    Article  CAS  Google Scholar 

  142. Andia ME, et al. Fibrin-targeted magnetic resonance imaging allows in vivo quantification of thrombus fibrin content and identifies thrombi amenable for thrombolysis. Arterioscler Thromb Vasc Biol. 2014;34(6):1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.

    Article  CAS  PubMed  Google Scholar 

  144. Cormode DP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pan D, et al. Multicolor computed tomographic molecular imaging with noncrystalline high-metal-density nanobeacons. Contrast Media Mol Imaging. 2014;9(1):13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zainon R, et al. Spectral CT of carotid atherosclerotic plaque: comparison with histology. Eur Radiol. 2012;22(12):2581–8.

    Article  CAS  PubMed  Google Scholar 

  147. Townsend DW. Combined positron emission tomography-computed tomography: the historical perspective. Semin Ultrasound CT MR. 2008;29(4):232–5.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  149. Sean LK, et al. Clinical applications of positron emission tomography (PET) imaging in medicine: oncology. Brain Dis Cardiol Curr Radiopharm. 2009;2(4):224–53.

    Article  Google Scholar 

  150. Bailey DL, et al. Positron emission tomography: basic sciences. London: Springer; 2005. p. 1–3.

    Book  Google Scholar 

  151. Rudd JH, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    Article  CAS  PubMed  Google Scholar 

  152. Rominger A, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50(10):1611–20.

    Article  PubMed  Google Scholar 

  153. Rudd JH, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55(23):2527–35.

    Article  PubMed  Google Scholar 

  154. Stoger JL, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8.

    Article  PubMed  CAS  Google Scholar 

  155. Folco EJ, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–14.

    Article  CAS  PubMed  Google Scholar 

  156. Satomi T, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med. 2013;54(6):999–1004.

    Article  CAS  PubMed  Google Scholar 

  157. Tavakoli S, et al. Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J Nucl Med. 2013;54(9):1661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tahara N, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  159. Dweck MR, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging. 2014;7(2):371–8.

    Article  PubMed  Google Scholar 

  160. Ripa RS, et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;3(4):361–71.

    PubMed  PubMed Central  Google Scholar 

  161. Li X, et al. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system. Eur J Nucl Med Mol Imaging. 2016;43(8):1503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rominger A, et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med. 2010;51(2):193–7.

    Article  PubMed  Google Scholar 

  163. Nahrendorf M, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  164. Majmudar MD, et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fujimura Y, et al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis. 2008;201(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  166. Gaemperli O, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10.

    Article  CAS  PubMed  Google Scholar 

  167. Vengrenyuk Y, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006;103(40):14678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Derlin T, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8.

    Article  PubMed  Google Scholar 

  169. Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51(12):1826–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  171. Derlin T, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5.

    Article  PubMed  Google Scholar 

  172. Dweck MR, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.

    Article  CAS  PubMed  Google Scholar 

  173. Martinez-Moller A, et al. Dual cardiac-respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging. 2007;34(9):1447–54.

    Article  PubMed  Google Scholar 

  174. Livieratos L, et al. Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging. 2006;33(5):584–8.

    Article  PubMed  Google Scholar 

  175. Livieratos L, et al. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol. 2005;50(14):3313–22.

    Article  CAS  PubMed  Google Scholar 

  176. Rubeaux M, et al. Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques. J Nucl Med. 2016;57(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  177. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45(3):212–23.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Polycarpou I, et al. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59(3):697–713.

    Article  PubMed  Google Scholar 

  179. Furst S, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56(2):261–9.

    Article  PubMed  CAS  Google Scholar 

  180. Baumgartner CF, et al. High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment. Med Image Anal. 2014;18(7):939–52.

    Article  PubMed  Google Scholar 

  181. Kolbitsch C, et al. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR. Med Phys. 2014;41(8):082304.

    Article  PubMed  Google Scholar 

  182. Henningsson M, et al. Whole-heart coronary MR angiography with 2D self-navigated image reconstruction. Magn Reson Med. 2012;67(2):437–45.

    Article  PubMed  Google Scholar 

  183. Andia ME, et al. Flow-independent 3D whole-heart vessel wall imaging using an interleaved T2-preparation acquisition. Magn Reson Med. 2013;69(1):150–7.

    Article  PubMed  Google Scholar 

  184. Prieto C, et al. Highly efficient respiratory motion compensated free-breathing coronary MRA using golden-step Cartesian acquisition. J Magn Reson Imaging. 2015;41(3):738–46.

    Article  PubMed  Google Scholar 

  185. Cruz G, et al. Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med. 2016.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from: (1) the British Heart Foundation (RG/12/1/29262), (2) the Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC (WT 088641/Z/09/Z), (3) the British Heart Foundation Centre of Excellence and (4) the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Lavin Plaza PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lavin Plaza, B., Gebhardt, P., Phinikaridou, A., Botnar, R.M. (2018). Atherosclerotic Plaque Imaging. In: Constantinides, C. (eds) Protocols and Methodologies in Basic Science and Clinical Cardiac MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-53001-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53001-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53000-0

  • Online ISBN: 978-3-319-53001-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics