Skip to main content

Preclinical Cardiac In Vivo Spectroscopy

  • Chapter
  • First Online:
Protocols and Methodologies in Basic Science and Clinical Cardiac MRI
  • 1011 Accesses

Abstract

Heart disease, and specifically heart failure, result from a complex interaction of genetics, metabolism, and physical insult/ischaemia that lead to changes in myocardial metabolism, gene expression, hypertrophy, cell death, or scarring. Magnetic resonance spectroscopy has been employed as a key tool for probing myocardial metabolism as it uniquely provides a nondestructive, noninvasive, method to probe metabolism without the need for additional radioactive probes. Many surgical and genetic animal models, which mimic the characteristics of human cardiac disease, have become established enabling researchers to study the physical and metabolic changes involved at a level of detail that is typically not possible in the clinic. In the preclinical context, a variety of pulse sequences, radio-frequency coils, and physical set-ups have been used to measure magnetic resonance spectra in order to study myocardial metabolism both ex vivo and in vivo. This chapter provides an overview of the current state of the art, and the animal models and biological systems to which they have been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[2,3]-DPG:

Diphosphoglycerate

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

BIR:

B1-insensitive rotation

CHESS:

Chemical shift selective

CK:

Creatine kinase

CSI:

Chemical shift imaging

DANTE:

Delays alternating with nutations for tailored excitation selective excitation

Dy[PPP]2 :

Dysprosium bis-triphosphate

Dy[TTHA]3− :

Dysprosium triethylenetriamine hexaacetate

ECG:

Electrocardiogram

EPSI:

Echo-planar spectroscopic-imaging

FID:

Free induction decay

FSW:

Fourier series window

FT:

Fourier transform

GAMT:

Guanidoacitate N-methyl transferase

HPLC:

High-pressure liquid chromatography

ISIS:

Image selected in vivo spectroscopy

kfCK :

Forward reaction rate constant for creatine kinase

krCK :

Reverse reaction rate constant for creatine kinase

LAD:

Left anterior descending coronary artery

LCx:

Left circumflex artery

m-CK:

Cytosolic muscle creatine kinase isoform

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

Nae + :

Extracellular sodium

Nai + :

Intracellular sodium

NMR:

Nuclear magnetic resonance

PCr:

Phosphocreatine

Pi :

Inorganic phosphate

PRESS:

Point resolved spectroscopy

RAPP:

Rotating frame experiment using adiabatic plane rotation pulses for phase modulation

RF:

Radio frequency

SI:

Spectroscopic imaging

SLAM:

Spectroscopy with linear algebraic modeling

SLIM:

Spectral localization by imaging

SLOOP:

Spatial localization with optimum pointspread function

SNR:

Signal-to-noise ratio

STEAM:

Stimulated echo acquisition mode

TAC:

Transverse aortic constriction

TE:

Echo time

TM:

Mixing time for STEAM pulse sequence

Tm[DOTP]5− :

Thulium(III)1,4,7,10 tetraazacyclododecane-N,N′,N″,N‴-tetra(methylenephosphonate)

TR:

Repetition time

TSP:

3-(trimethylsilyl)propionic-2,2,3,3,d 4 acid

References

  1. Abdurrachim D, Ciapaite J, Wessels B, Nabben M, Luiken JJFP, Nicolay K, Prompers JJ. Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. BBA Mol Cell Biol Lipids. 2014;1841(10):1525–37. doi:10.1016/j.bbalip.2014.07.016.

    Article  CAS  Google Scholar 

  2. Ackerman JJH, Bore PJ, Gadian DG, Grove TH, Radda GK. Nmr-studies of metabolism in perfused organs. Philos Trans Roy Soc B. 1980;289(1037):425–36. doi:10.1098/Rstb.1980.0059.

    Article  CAS  Google Scholar 

  3. Aguor ENE, van de Kolk CWA, Arslan F, Nederhoff MGJ, Doevendans PAFM, Pasterkamp G, Strijkers GJ, van Echteld CJA. Na-23 chemical shift imaging and Gd enhancement of myocardial edema. Int J Card Imaging. 2013;29(2):343–54. doi:10.1007/s10554-012-0093-6.

    Article  Google Scholar 

  4. Aksentijevic D, Zervou S, Faller KME, McAndrew DJ, Schneider JE, Neubauer S, Lygate CA. Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart. PLoS One. 2014;9(10):e109021. doi:10.1371/Journal.Pone.0109021.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Askenasy N, Navon G. Continuous monitoring of intracellular volumes in isolated rat hearts during normothermic perfusion and ischemia. J Magn Reson. 1997;124(1):42–50. doi:10.1006/Jmre.1996.1026.

    Article  CAS  PubMed  Google Scholar 

  6. Askenasy N, Vivi A, Tassini M, Navon G, Farkas DL. NMR spectroscopic characterization of sarcolemmal permeability during myocardial ischemia and reperfusion. J Mol Cell Cardiol. 2001;33(8):1421–33. doi:10.1006/jmcc.2001.1404.

    Article  CAS  PubMed  Google Scholar 

  7. Bakermans AJ, Abdurrachim D, Geraedts TR, Houten SM, Nicolay K, Prompers JJ. In vivo proton T-1 relaxation times of mouse myocardial metabolites at 9.4 T. Magn Reson Med. 2015;73(6):2069–74. doi:10.1002/mrm.25340.

    Article  CAS  PubMed  Google Scholar 

  8. Bakermans AJ, Abdurrachim D, van Nierop BJ, Koeman A, van der Kroon I, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ. In vivo mouse myocardial P-31 MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR Biomed. 2015b;28(10):1218–27. doi:10.1002/nbm.3371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bakermans AJ, Dodd MS, Nicolay K, Prompers JJ, Tyler DJ, Houten SM. Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse. Cardiovasc Res. 2013;100(3):441–9. doi:10.1093/cvr/cvt212.

    Article  CAS  PubMed  Google Scholar 

  10. Bakermans AJ, van Weeghel M, Denis S, Nicolay K, Prompers JJ, Houten SM. Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J Inherit Metab Dis. 2013;36(6):973–81. doi:10.1007/s10545-013-9604-4.

    Article  CAS  PubMed  Google Scholar 

  11. Balschi JA. Na-23 NMR demonstrates prolonged increase of intracellular sodium following transient regional ischemia in the in situ pig heart. Basic Res Cardiol. 1999;94(1):60–9. doi:10.1007/S003950050127.

    Article  CAS  PubMed  Google Scholar 

  12. Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with P-31-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40 (7):1267–1274. Pii S0735-1097(02)02160-5 doi:10.1016/S0735-1097(02)02160-5.

  13. Bendall MR. Portable Nmr Sample localization method using inhomogeneous Rf irradiation coils. Chem Phys Lett. 1983;99(4):310–5. doi:10.1016/0009-2614(83)87547-2.

    Article  CAS  Google Scholar 

  14. Bodenhausen G, Freeman R, Morris GA. Simple pulse sequence for selective excitation in fourier-transform Nmr. J Magn Reson. 1976;23(1):171–5. doi:10.1016/0022-2364(76)90150-5.

    CAS  Google Scholar 

  15. Bottomley PA, Weiss RG. Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Radiology. 2001;219(2):411–8.

    Article  CAS  PubMed  Google Scholar 

  16. Burger C, Buchli R, Mckinnon G, Meier D, Boesiger P. The impact of the isis experiment order on spatial contamination. Magn Reson Med. 1992;26(2):218–30. doi:10.1002/Mrm.1910260204.

    Article  CAS  PubMed  Google Scholar 

  17. Buser PT, Auffermann W, Wu ST, Jasmin G, Parmley WW, Wikmancoffelt J. Dobutamine potentiates amrinones beneficial-effects in moderate but not in advanced heart-failure – P-31-Mrs in isolated hamster hearts. Circ Res. 1990;66(3):747–53.

    Article  CAS  PubMed  Google Scholar 

  18. Camacho P, Fan HM, Liu ZM, He JQ. Small mammalian animal models of heart disease. Am J Cardiovasc Dis. 2016;6(3):70–80.

    PubMed  PubMed Central  Google Scholar 

  19. Chen W, Zhang JY, Eljgelshoven MHJ, Zhang Y, Zhu XH, Wang CS, Cho Y, Merkle H, Ugurbil K. Determination of deoxymyoglobin changes during graded myocardial ischemia: an in vivo H-1 NMR spectroscopy study. Magn Reson Med. 1997;38(2):193–7. doi:10.1002/Mrm.1910380206.

    Article  CAS  PubMed  Google Scholar 

  20. Cho YK, Merkle H, Zhang JY, Tsekos NV, Bache RJ, Ugurbil K. Noninvasive measurements of transmural myocardial metabolites using 3-D P-31 NMR spectroscopy. Am J Physiol-Heart Circ. 2001;280(1):H489–97.

    CAS  Google Scholar 

  21. Constantinides CD, Kraitchman DL, O’Brien KO, Boada FE, Gillen J, Bottomley PA. Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using Na-23 MRI. Magn Reson Med. 2001;46(6):1144–51. doi:10.1002/Mrm.1311.

    Article  CAS  PubMed  Google Scholar 

  22. Cross HR, Radda GK, Clarke K. The role of Na+/K+ atpase activity during low-flow ischemia in preventing myocardial injury – a P-31, Na-23 and Rb-87 Nmr spectroscopic study. Magn Reson Med. 1995;34(5):673–85. doi:10.1002/Mrm.1910340505.

    Article  CAS  PubMed  Google Scholar 

  23. Dell’Italia LJ, Evanochko WT, Blackwell GG, Pearce DJ, Pohost GM. Relationship between shortening load, contractility, and myocardial energetics in intact dog. Am J Phys. 1993;264(6):H2180–7.

    Google Scholar 

  24. Desrois M, Kober F, Lan C, Dalmasso C, Cole M, Clarke K, Cozzone PJ, Bernard M. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart -a longitudinal MR study. NMR Biomed. 2014;27(5):529–38. doi:10.1002/nbm.3088.

    Article  CAS  PubMed  Google Scholar 

  25. Edelstein WA, Foster TH, Schenck JF (1985) The relative sensitivity of surface coils to deep lying tissues. Paper presented at the Proceedings of the 4th Annual Meeting, Society of Magnetic Resonance, London.

    Google Scholar 

  26. Flögel U, Jacoby C, Godecke A, Schrader J. In vivo 2D mapping of impaired murine cardiac energetics in NO-induced heart failure. Magn Reson Med. 2007;57(1):50–8. doi:10.1002/mrm.21101.

    Article  PubMed  Google Scholar 

  27. Frahm J, Merboldt KD, Hanicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson. 1987;72(3):502–8. doi:10.1016/0022-2364(87)90154-5.

    CAS  Google Scholar 

  28. Furuyama JK, Wilson NE, Burns BL, Nagarajan R, Margolis DJ, Thomas MA. Application of compressed sensing to multidimensional spectroscopic imaging in human prostate. Magn Reson Med. 2012;67(6):1499–505. doi:10.1002/mrm.24265.

    Article  PubMed  Google Scholar 

  29. Gadian DG, Hoult DI, Radda GK, Seeley PJ, Chance B, Barlow C. Phosphorus nuclear magnetic-resonance studies on normoxic and ischemic cardiac tissue. Proc Natl Acad Sci USA. 1976;73(12):4446–8. doi:10.1073/Pnas.73.12.4446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garlick PB, Radda GK, Seeley PJ. Phosphorus Nmr-studies on perfused heart. Biochem Biophys Res Commun. 1977;74(3):1256–62. doi:10.1016/0006-291x(77)91653-9.

    Article  CAS  PubMed  Google Scholar 

  31. Geethanath S, Baek HM, Ganji SK, Ding Y, Maher EA, Sims RD, Choi C, Lewis MA, Kodibagkar VD. Compressive sensing could accelerate H-1 MR metabolic imaging in the clinic. Radiology. 2012;262(3):985–94. doi:10.1148/radiol.11111098.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez F, Bassingthwaighte JB. Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Phys. 1990;258(4):H1012–24.

    CAS  Google Scholar 

  33. Goudemant JF, Elst LV, Vanhaverbeke Y, Muller RN. P-31 Nmr kinetics study of cardiac metabolism under mild hypoxia. J Magn Reson Ser B. 1995;106(3):212–9. doi:10.1006/Jmrb.1995.1036.

    Article  CAS  Google Scholar 

  34. Greiser A, von Kienlin M. Efficient k-space sampling by density-weighted phase-encoding. Magn Reson Med. 2003;50(6):1266–75. doi:10.1002/mrm.10647.

    Article  PubMed  Google Scholar 

  35. Gupta A, Rohlfsen C, Leppo MK, Chacko VP, Wang YB, Steenbergen C, Weiss RG. Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. Plos One. 2013;8(10):e74675. doi:10.1371/journal.pone.0074675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta RK, Gupta P. Direct observation of resolved resonances from intra-cellular and extracellular Na-23 ions in Nmr-studies of intact-cells and tissues using dysprosium(Iii)tripolyphosphate as paramagnetic shift-reagent. J Magn Reson. 1982;47(2):344–50. doi:10.1016/0022-2364(82)90127-5.

    CAS  Google Scholar 

  37. Hendrich K, Merkle H, Weisdorf S, Vine W, Garwood M, Ugurbil K. Phase-modulated rotating-frame spectroscopic localization using an adiabatic plane-rotation pulse and a single surface coil. J Magn Reson. 1991;92(2):258–75. doi:10.1016/0022-2364(91)90269-Y.

    CAS  Google Scholar 

  38. Holt WW, Wendland MF, Derugin N, Finkbeiner WE, Higgins CB. Effect of repetitive brief episodes of cardiac ischemia on P-31 magnetic-resonance spectroscopy in the cat. Magn Reson Med. 1990;15(1):70–80. doi:10.1002/Mrm.1910150108.

    Article  CAS  PubMed  Google Scholar 

  39. Hu S, Lustig M, Balakrishnan A, Larson PEZ, Bok R, Kurhanewicz J, Nelson SJ, Goga A, Pauly JM, Vigneron DB. 3D compressed sensing for highly accelerated hyperpolarized C-13 MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med. 2010;63(2):312–21. doi:10.1002/mrm.22233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu XP, Levin DN, Lauterbur PC, Spraggins T. Slim – spectral localization by imaging. Magn Reson Med. 1988;8(3):314–22. doi:10.1002/Mrm.1910080308.

    Article  CAS  PubMed  Google Scholar 

  41. Imahashi K, Hashimoto K, Yamaguchi H, Nishimura T, Kusuoka H. Alteration of intracellular Na+ during ischemia in diabetic rat hearts: the role of reduced activity in Na+/H+ exchange against stunning. J Mol Cell Cardiol. 1998;30(3):509–17. doi:10.1006/Jmcc.1997.0615.

    Article  CAS  PubMed  Google Scholar 

  42. Imahashi K, Nishimura T, Yoshioka J, Kusuoka H. Role of intracellular Na+ kinetics in preconditioned rat heart. Circ Res. 2001;88(11):1176–82. doi:10.1161/Hh1101.092139.

    Article  CAS  PubMed  Google Scholar 

  43. Ishikawa M, Mori T, Itoh S, Fujiki H, Koga K, Tominaga M, Yabuuchi Y. Effects of Opc-18790, a new positive inotropic agent, on energetics in the ischemic canine heart – a P-31-Mrs study. Cardiovasc Res. 1995;30(2):299–306.

    Article  CAS  PubMed  Google Scholar 

  44. Jacobus WE, Taylor GJ, Hollis DP, Nunnally RL. Phosphorus nuclear magnetic-resonance of perfused working rat hearts. Nature. 1977;265(5596):756–8. doi:10.1038/265756a0.

    Article  CAS  PubMed  Google Scholar 

  45. Jameel MN, Hu QS, Zhang JY. Myocytes oxygenation and high energy phosphate levels during hypoxia. PLoS One. 2014;9(9):101317. doi:10.1371/Journal.Pone.0101317.

    Article  Google Scholar 

  46. Kanayama S, Kuhara S, Satoh K. In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med. 1996;36(4):637–42. doi:10.1002/Mrm.1910360421.

    Article  CAS  PubMed  Google Scholar 

  47. Kirkels JH, Vanechteld CJA, Ruigrok TJC. Intracellular magnesium during myocardial ischemia and reperfusion – possible consequences for postischemic recovery. J Mol Cell Cardiol. 1989;21(11):1209–18. doi:10.1016/0022-2828(89)90697-4.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar A, Edelstein WA, Bottomley PA. Noise figure limits for circular loop MR coils. Magn Reson Med. 2009;61(5):1201–9. doi:10.1002/mrm.21948.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kupriyanov VV, Gruwel MLH. Rubidium-87 magnetic resonance spectroscopy and imaging for analysis of mammalian K+ transport. NMR Biomed. 2005;18(2):111–24. doi:10.1002/nbm.892.

    Article  CAS  PubMed  Google Scholar 

  50. Kupriyanov VV, Xiang B, Sun J, Jilkina O, Dai G, Deslauriers R. Effects of ischemia on intracellular rubidium in pig and rat hearts: Rb-87 NMR imaging and spectroscopic study. Magn Reson Med. 2000;44(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  51. Lide DR, Weast RC, Chemical Rubber Company. CRC handbook of chemistry and physics : a ready reference book of chemical and physical data. 83rd ed. Boca Raton: CRC Press; 2002.

    Google Scholar 

  52. Lu M, Atthe B, Mateescu GD, Flask CA, Yu X. Assessing mitochondrial respiration in isolated hearts using 17O MRS. NMR Biomed. 2012;25(6):883–9. doi:10.1002/nbm.1807.

    Article  CAS  PubMed  Google Scholar 

  53. Lu M, Zhu XH, Zhang Y, Chen W. Intracellular redox state revealed by in vivo P-31 MRS measurement of NAD(+) and NADH contents in brains. Magn Reson Med. 2014;71(6):1959–72. doi:10.1002/mrm.24859.

    Article  CAS  PubMed  Google Scholar 

  54. Luedde M, Flögel U, Knorr M, Grundt C, Hippe HJ, Brors B, Frank D, Haselmann U, Antony C, Voelkers M, Schrader J, Most P, Lemmer B, Katus HA, Frey N. Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J Mol Med-JMM. 2009;87(4):411–22. doi:10.1007/s00109-008-0436-x.

    Article  CAS  Google Scholar 

  55. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95. doi:10.1002/mrm.21391.

    Article  PubMed  Google Scholar 

  56. Luyten PR, Groen JP, Vermeulen JWAH, Denhollander JA. Experimental approaches to image localized human P-31 Nmr-spectroscopy. Magn Reson Med. 1989;11(1):1–21. doi:10.1002/Mrm.1910110102.

    Article  CAS  PubMed  Google Scholar 

  57. Maguire ML, Geethanath S, Lygate CA, Kodibagkar VD, Schneider JE. Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to Na-23-imaging of mouse hearts. J Cardiovasc Magn R. 2015;17:45. doi:Unsp 45 1186/S12968–015–0149-6 60.

    Google Scholar 

  58. Morris GA, Freeman R. Selective excitation in fourier-transform nuclear magnetic-resonance. J Magn Reson. 1978;29(3):433–62. doi:10.1016/0022-2364(78)90003-3.

    CAS  Google Scholar 

  59. Murakami Y, Zhang JY, Eijgelshoven MHJ, Chen W, Carlyle WC, Zhang Y, Gong GR, Bache RJ. Myocardial creatine kinase kinetics in hearts with postinfarction left ventricular remodeling. Am J Physiol-Heart Circ. 1999;276(3):H892–900.

    CAS  Google Scholar 

  60. Neubauer S. The failing heart – reply. N Engl J Med. 2007;356(24):2546–6.

    Google Scholar 

  61. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96(7):2190–6.

    Article  CAS  PubMed  Google Scholar 

  62. Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG. Na-23 microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. Magn Reson Mater Phys. 2004;17(3–6):196–200. doi:10.1007/s10334-004-0048-6.

    Article  CAS  Google Scholar 

  63. Nunnally RL, Hollis DP. Adenosine-triphosphate compartmentation in living hearts – phosphorus nuclear magnetic-resonance saturation transfer study. Biochem-US. 1979;18(16):3642–6. doi:10.1021/Bi00583a032.

    Article  CAS  Google Scholar 

  64. O’Donnell JM, Fasano MJ, Lewandowski ED. Resolving confounding enrichment kinetics due to overlapping resonance signals from C-13-enriched long chain fatty acid oxidation and uptake within intact hearts. Magn Reson Med. 2015;74(2):330–5. doi:10.1002/mrm.25446.

    Article  PubMed  Google Scholar 

  65. Ordidge RJ, Connelly A, Lohman JAB. Image-selected in vivo spectroscopy (Isis) – a new technique for spatially selective Nmr-spectroscopy. J Magn Reson. 1986;66(2):283–94. doi:10.1016/0022-2364(86)90031-4.

    CAS  Google Scholar 

  66. Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T-2 losses. J Magn Reson Imaging. 2005;21(5):546–55. doi:10.1002/jmrt.20322.

    Article  PubMed  Google Scholar 

  67. Pabst T, Sandstede J, Beer M, Kenn W, Greiser A, von Kienlin M, Neubauer S, Hahn D. Optimization of ECG-triggered 3D Na-23 MRI of the human heart. Magn Reson Med. 2001;45(1):164–6. doi:10.1002/1522–2594(200101)45:1<164::Aid-Mrm1022>3.0.Co;2-S.

    Article  CAS  PubMed  Google Scholar 

  68. Phillips D, ten Hove M, Schneider JE, Wu CO, Sebag-Montefiore L, Aponte AM, Lygate CA, Wallis J, Clarke K, Watkins H, Balaban RS, Neubauer S. Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J Mol Cell Cardiol. 2010;48(4):582–90. doi:10.1016/j.yjmcc.2009.10.033.

    Article  CAS  PubMed  Google Scholar 

  69. Robitaille PM, Lew B, Merkle H, Sublett E, Lindstrom P, From AHL, Garwood M, Bache RJ, Ugurbil K. Transmural metabolite distribution in regional myocardial ischemia as studied with P-31 Nmr. Magn Reson Med. 1989;10(1):108–18. doi:10.1002/Mrm.1910100110.

    Article  CAS  PubMed  Google Scholar 

  70. Saupe KW, Spindler M, Tian R, Ingwall JS. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res. 1998;82(8):898–907.

    Article  CAS  PubMed  Google Scholar 

  71. Schaefer S, Camacho SA, Gober J, Obregon RG, Degroot MA, Botvinick EH, Massie B, Weiner MW. Response of myocardial metabolites to graded regional ischemia - P-31 Nmr-spectroscopy of porcine myocardium in vivo. Circ Res. 1989;64(5):968–76.

    Article  CAS  PubMed  Google Scholar 

  72. Schneider J, Fekete E, Weisser A, Neubauer S, von Kienlin M. Reduced H-1-NMR visibility of creatine in isolated rat hearts. Magn Reson Med. 2000;43(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  73. Schneider JE, Tyler DJ, ten Hove M, Sang AE, Cassidy PJ, Fischer A, Wallis J, Sebag-Montefiore LM, Watkins H, Isbrandt D, Clarke K, Neubauer S. In vivo cardiac H-1-MRS in the mouse. Magn Reson Med. 2004;52(5):1029–35. doi:10.1002/mrm.20257.

    Article  CAS  PubMed  Google Scholar 

  74. Simor T, Lorand T, Szollosy A, Gaszner B, Digerness SB, Elgavish GA. Na-23 NMR shift reagents enhance cardiac staircase effect in isolated perfused rat hearts. NMR Biomed. 1999;12(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  75. Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol-Heart Commun. 2016;311(3):H759–67. doi:10.1152/ajpheart.00912.2015.

    Article  Google Scholar 

  76. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 2009;20(10):104035. doi:Artn 104035 1088/0957-0233/20/10/104035.

    Google Scholar 

  77. Stockler S, Isbrandt D, Hanefeld F, Schmidt B, vonFigura K. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet. 1996;58(5):914–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stoll VM, Clarke WT, Levelt E, Liu A, Myerson SG, Robson MD, Neubauer S, Rodgers CT. Dilated cardiomyopathy: phosphorus 31 MR spectroscopy at 7 T. Radiology. 2016;281(2):409–17. doi:10.1148/radiol.2016152629.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Straeter-Knowlen IM, Butterworth EJ, Buchthal SD, den Hollander JA, Caulfield JB, Jennings RB, Evanochko WT. ‘PCr overshoot’: a study of the duration in canine myocardium. NMR Biomed. 2002;15(1):52–9. doi:10.1002/nbm.757.

    Article  CAS  PubMed  Google Scholar 

  80. StreaterKnowlen IM, Evanochko WT, denHollander JA, Wolkowicz PE, Balschi JA, Caulfield JB, Ku DD, Pohost GM. H-1 NMR spectroscopic imaging of myocardial triglycerides in excised dog hearts subjected to 24 hours of coronary occlusion. Circulation. 1996;93(7):1464–70.

    Article  Google Scholar 

  81. Tal A, Gonen O. Spectroscopic localization by simultaneous acquisition of the double-spin and stimulated echoes. Magn Reson Med. 2015;73(1):31–43. doi:10.1002/mrm.25112.

    Article  CAS  PubMed  Google Scholar 

  82. Tucci S, Flögel U, Hermann S, Sturm M, Schafers M, Spiekerkoetter U. Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(−/−)) mice. BBA-Mol Basis Dis. 2014;1842(5):677–85. doi:10.1016/j.bbadis.2014.02.001.

    Article  CAS  Google Scholar 

  83. van Dorsten FA, Nederhoff MGJ, Nicolay K, Van Echteld CJA. P-31 NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Am J Physiol-Heart Commun. 1998;275(4):H1191–9.

    Google Scholar 

  84. van Dorsten FA, Reese T, Gellerich JF, van GJA E, MGJ N, Muller HJ, van Vliet G, Nicolay K. Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. Mol Cell Biochem. 1997;174(1–2):33–42. doi:10.1023/A:1006847605088.

    Article  PubMed  Google Scholar 

  85. Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D. Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson. 1999;140(1):120–30. doi:10.1006/Jmre.1999.1835.

    Article  CAS  PubMed  Google Scholar 

  86. von Kienlin M. Cardiac (1)H-MR spectroscopy. Magn Reson Mater Phys. 1998;6(2–3):107–8. doi:10.1016/S1352-8661(98)00030-1.

    Google Scholar 

  87. von Kienlin M. Methodological advances in cardiac (31)P-MR spectroscopy. Magn Reson Mater Phys. 2000;11(1):36–8. doi:10.1016/S1352-8661(00)00106-X.

    Article  Google Scholar 

  88. Xiong QA, Du F, Zhu XH, Zhang PY, Suntharalingam P, Ippolito J, Kamdar FD, Chen W, Zhang JY. ATP production rate via creatine kinase or ATP synthase in vivo a novel superfast magnetization saturation transfer method. Circ Res. 2011;108(6):653–U265. doi:10.1161/CIRCRESAHA.110.231456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang JY, Wilke N, Wang Y, Zhang Y, Wang CS, Eijgelshoven MHJ, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AHL. Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model – MRI and P-31-MRS study. Circulation. 1996;94(5):1089–100.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang W, Ten Hove M, Schneider JE, Stuckey DJ, Sebag-Montefiore L, Bia BL, Radda GK, Davies KE, Neubauer S, Clarke K. Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol. 2008;45(6):754–60. doi:10.1016/j.yjmcc.2008.09.125.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Gabr RE, Schar M, Weiss RG, Bottomley PA. Magnetic resonance Spectroscopy with Linear Algebraic Modeling (SLAM) for higher speed and sensitivity. J Magn Reson. 2012;218:66–76. doi:10.1016/j.jmr.2012.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang Y, Gabr RE, Zhou JY, Weiss RG, Bottomley PA. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding. J Magn Reson. 2013;237:125–38. doi:10.1016/j.jmr.2013.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahon L. Maguire PhD .

Editor information

Editors and Affiliations

Tabulor Summary: Preclinical In Vivo Spectroscopy

Tabulor Summary: Preclinical In Vivo Spectroscopy

Table 2

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Maguire, M.L. (2018). Preclinical Cardiac In Vivo Spectroscopy. In: Constantinides, C. (eds) Protocols and Methodologies in Basic Science and Clinical Cardiac MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-53001-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53001-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53000-0

  • Online ISBN: 978-3-319-53001-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics