Skip to main content

Connectivity of Large Wireless Networks in the Presence of Interference

  • Chapter
  • First Online:
Connectivity of Communication Networks
  • 474 Accesses

Abstract

In this chapter, we investigate connectivity of large wireless networks in the presence of interference. Different from previous chapters where connections are assumed to be independent, the presence of interference implies that signals transmitted at the same time will mutually interfere with each other. Hence, connections become mutually correlated. Specifically, consider the extended network model and the SINR connection model, we establish a sufficient condition and a necessary condition, i.e., an upper bound and a lower bound, on the transmission power required for a network adopting the carrier sense multiple access protocol to be asymptotically almost surely connected. The two bounds differ by a constant factor only. It is shown that the transmission power only needs to be increased by a constant factor to combat interference and maintain connectivity compared with that considering a unit disk connection model without interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Apostol, T.M., Mnatsakanian, M.A.: Sums of squares of distances in m-space. Am. Math. Month. 110 (6), 516–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avin, C., Lotker, Z., Pasquale, F., Pignolet, Y.A.: A note on uniform power connectivity in the sinr model. Algorithmic Asp. Wirel. Sens. Netw. 5804, 116–127 (2009)

    Article  MATH  Google Scholar 

  3. Busson, A., Chelius, G.: Point processes for interference modeling in csma/ca ad-hoc networks. In: Proceedings of the 6th ACM Symposium on Performance Evaluation of Wireless Ad hoc, Sensor, and Ubiquitous Networks, pp. 33–40 (2009)

    Google Scholar 

  4. Conway, J., Sloane, N.J.A.: Sphere Packings, Lattices and Groups (Grundlehren der mathematischen Wissenschaften). Springer, New York (2010)

    Google Scholar 

  5. Dousse, O., Baccelli, F., Thiran, P.: Impact of interferences on connectivity in ad hoc networks. IEEE/ACM Trans. Netw. 13 (2), 425–436 (2005)

    Article  Google Scholar 

  6. Dousse, O., Franceschetti, M., Macris, N., Meester, R., Thiran, P.: Percolation in the signal to interference ratio graph. J. Appl. Probab. 43 (2), 552–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franceschetti, M., Meester, R.: Random Networks for Communication. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  8. Gallager, R.: A perspective on multiaccess channels. IEEE Trans. Inf. Theory 31 (2), 124–142 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, P., Kumar, P.R.: Critical Power for Asymptotic Connectivity in Wireless Networks, pp. 547–566. Systems and Control: Foundations and Applications. Birkhauser, Boston (1998)

    Google Scholar 

  10. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27 (7), 1029–1046 (2009)

    Article  Google Scholar 

  11. Haenggi, M., Ganti, R.K.: Interference in large wireless networks. Foundations Trends Netw. 3 (2), 127–248 (2009)

    Article  MATH  Google Scholar 

  12. Kumar, S., Raghavan, V.S., Deng, J.: Medium access control protocols for ad hoc wireless networks: A survey. Ad Hoc Netw. 4 (3), 326–358 (2006)

    Article  Google Scholar 

  13. Lebhar, E., Lotker, Z.: Unit disk graph and physical interference model: Putting pieces together. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8 (2009)

    Google Scholar 

  14. Nguyen, H.Q., Baccelli, F., Kofman, D.: A stochastic geometry analysis of dense ieee 802.11 networks. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications, pp. 1199–1207 (2007)

    Google Scholar 

  15. Penrose, M.D.: Random Geometric Graphs. Oxford Studies in Probability. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  16. Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice Hall Communications Engineering and Emerging Technologies Series. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mao, G. (2017). Connectivity of Large Wireless Networks in the Presence of Interference. In: Connectivity of Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-52989-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52989-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52988-2

  • Online ISBN: 978-3-319-52989-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics