Patient-Specific Studies of Pelvic Floor Biomechanics Using Imaging

  • Qi Wei
  • Siddhartha Sikdar
  • Parag Chitnis
  • Ghazaleh Rostaminia
  • S. Abbas Shobeiri
Chapter

Abstract

Biomechanical modeling and simulation of the pelvic floor structures have caught much attention in the past decade. Many computational approaches were developed with the goal of advancing our understanding the mechanism of the pelvic floor pathologies and improving treatment clinically. In this chapter, we review some of the existing work on building three dimensional (3D) models of the pelvic floor and modeling its mechanics.

Keywords

3D computational modeling 3D geometric modeling Finite element model Levator ani muscle Pelvic floor 

References

  1. 1.
    Rostaminia G, Abramowitch S. Finite element modeling in female pelvic floor medicine: a literature review. Curr Obstet Gynecol Rep. 2015;4(2):125–31.CrossRefGoogle Scholar
  2. 2.
    Shobeiri SA, editor. Practical pelvic floor ultrasonography: a multicompartmental approach to 2D/3D/4D ultrasonography of pelvic floor. New York: Springer; 2014.Google Scholar
  3. 3.
    Hoyte L, Damaser M. Biomechanics of the female pelvic floor. London, UK: Academic Press/Elsevier; 2016.Google Scholar
  4. 4.
    DeLancey JOL, Kearney R, Chou Q, Speights S, Binno S. The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet Gynecol. 2003;101(1):46–53.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Janda Š, van der Helm FCT, de Blok SB. Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech. 2003;36(6):749–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Alexandre F, Sayed RF, Mascarenhas T, Jorge RM, Parente MP, Fernandes AA, Tavares JM. 3D reconstruction of pelvic floor for numerical simulation purpose. In: VIPIMAGE-ECCOMAS. 2008. p. 359–62.Google Scholar
  7. 7.
    Saleme CS, Parente MPL, Jorge RMN, Pinotti M, Silva-Filho AL, Roza T, et al. An approach on determining the displacements of the pelvic floor during voluntary contraction using numerical simulation and MRI. Comput Methods Biomech Biomed Engin. 2011;14(4):365–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Martins JA, Pato MP, Pires EB, Jorge RM, Parente M, Mascarenhas T. Finite element studies of the deformation of the pelvic floor. Ann N Y Acad Sci. 2007;1101(1):316–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Melchert F, Wischnik A, Nalepa E. The prevention of mechanical birth trauma by means of computer aided simulation of delivery by means of nuclear magnetic resonance imaging and finite element analysis. J Obstet Gynaecol. 1995;21(2):195–207.Google Scholar
  10. 10.
    Lien K-C, Mooney B, DeLancey JOL, Ashton-Miller JA. Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol. 2004;103(1):31–40.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li X, Kruger JA, Chung JH, Nash MP, Nielsen PM. Modelling childbirth: comparing athlete and non-athlete pelvic floor mechanics. In: Metaxas D, Axel L, Fichtinger G, Székely G, editors. Medical image computing and computer-assisted intervention-MICCAI, Vol 5242. Lecture Notes in Computer Science. Berlin Heidelberg: Springer; 2008. p. 750–7.Google Scholar
  12. 12.
    Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ, et al. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008;199(2):198e1–5.CrossRefGoogle Scholar
  13. 13.
    Martins JAC, Pires EB, Salvado R, Dinis PB. A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng. 1998;151(3–4):419–33.CrossRefGoogle Scholar
  14. 14.
    Li X, Kruger JA, Chung J-H, Nash MP, Nielsen PMF. Modelling the pelvic floor for investigating difficulties during childbirth. In: Proc. SPIE 6916, Medical Imaging 2008: Physiology, Function, and Structure from Medical Images, 69160V (March 12, 2008); doi: 10.1117/12.769898.
  15. 15.
    Jing D, Ashton-Miller JA, DeLancey JOL. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45(3):455–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Noakes KF, Pullan AJ, Bissett IP, Cheng LK. Subject specific finite elasticity simulations of the pelvic floor. J Biomech. 2008;41(14):3060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee SL, Darzi A, Yang GZ. Subject specific finite element modelling of the levator ani. Med Image Comput Comput Assist Interv. 2005;8(Pt 1):360–7.PubMedGoogle Scholar
  18. 18.
    Chen L, Low LK, DeLancey JO, Ashton-Miller JA. In vivo estimation of perineal body properties using ultrasound quasistatic elastography in nulliparous women. J Biomech. 2015;48(9):1575–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Palmeri ML, Feltovich H, Homyk AD, Carlson LC, Hall TJ. Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(10):2053–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Alperin M, Cook M, Tuttle LJ, Esparza MC, Lieber RL. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am J Obstet Gynecol. 2016;215(3):312.e1–9.Google Scholar
  22. 22.
    Alperin M, Lawley DM, Esparza MC, Lieber RL. Pregnancy-induced adaptations in the intrinsic structure of rat pelvic floor muscles. Am J Obstet Gynecol. 2015;213(2):191.e1–7.Google Scholar
  23. 23.
    Tuttle LJ, Nguyen OT, Cook MS, Alperin M, Shah SB, Ward SR, et al. Architectural design of the pelvic floor is consistent with muscle functional subspecialization. Int Urogynecol J. 2013;25(2):205–12.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Oelze ML, Mamou J. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(2):336–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Mamou J, Oelze ML. Quantitative ultrasound in soft tissues. Dordrecht: Springer Netherlands; 2013.CrossRefGoogle Scholar
  26. 26.
    Feltovich H, Nam K, Hall TJ. Quantitative ultrasound assessment of cervical microstructure. Ultrason Imaging. 2010;32(3):131–42.CrossRefPubMedGoogle Scholar
  27. 27.
    House M, Feltovich H, Hall TJ, Stack T, Patel A, Socrate S. Three-dimensional, extended field-of-view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy. Ultrason Imaging. 2012;34(1):1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Reusch LM, Feltovich H, Carlson LC, Hall G, Campagnola PJ, Eliceiri KW, et al. Nonlinear optical microscopy and ultrasound imaging of human cervical structure. J Biomed Opt. 2013;18(3):031110.1–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qi Wei
    • 1
  • Siddhartha Sikdar
    • 1
  • Parag Chitnis
    • 1
  • Ghazaleh Rostaminia
    • 2
  • S. Abbas Shobeiri
    • 3
    • 4
  1. 1.Department of BioengineeringGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Obstetrics and Gynecology, INOVA Women’s Hospital, Virginia Commonwealth UniversityInova Fairfax Medical Campus, 3300 Gallows RoadFalls ChurchUSA
  3. 3.Department of Obstetrics and Gynecology, Gynecologic Subspecialties, INOVA Women’s HospitalVirginia Commonwealth UniversityFalls ChurchUSA
  4. 4.Department of BioengineeringGeorge Mason UniversityFairfaxUSA

Personalised recommendations