Skip to main content

Emerging Imaging Technologies and Techniques

  • Chapter
  • First Online:
Practical Pelvic Floor Ultrasonography

Abstract

Ultrasound provides easy access and ease of use for visualization of structures. In pelvic floor ultrasound imaging, the functionality of structures visualized has traditionally been augmented with digital pelvic floor examination. New modalities such as elastography, shear wave elastography, acoustic radiation force impulse, photoacoustic imaging, and vaginal tactile imaging may provide additional insight into the functionality of pelvic floor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC. Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. In: Kessler LW, editor. Acoustical imaging. Vol. 16. Proceedings of the Sixteenth International Symposium, June 10–12, 1987. New York/London:Plenum Press; 1988. p. 317–27.

    Google Scholar 

  2. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  3. Skovoroda AR, Emelianov SY, Lubinski MA, Sarvazyan AP, O’Donnell M. Theoretical analysis and verification of ultrasound displacement and strain imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(3):302–13.

    Article  Google Scholar 

  4. Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging of the elastic properties of tissue—a review. Ultrasound Med Biol. 1996;22(8):959–77.

    Article  CAS  PubMed  Google Scholar 

  5. Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography - review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55.

    Article  PubMed  Google Scholar 

  7. Ribbers H, Lopata RG, Holewijn S, Pasterkamp G, Blankensteijn JD, de Korte CL. Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound Med Biol. 2007;33(4):530–40.

    Article  PubMed  Google Scholar 

  8. Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29(3):427–35.

    Article  PubMed  Google Scholar 

  9. Kim K, Johnson LA, Jia C, Joyce JC, Rangwalla S, Higgins PDR, Rubin JM. Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol. 2008;34(6):902–12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE, et al. Differentiating benign from malignant solid breast masses with US strain imaging. Radiology. 2007;245(2):401–10.

    Article  PubMed  Google Scholar 

  11. Luo J, Fujikura K, Homma S, Konofagou EE. Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts. Ultrasound Med Biol. 2007;33(8):1206–23.

    Article  PubMed  Google Scholar 

  12. Rubin JM, Xie H, Kim K, Weitzel WF, Emelianov SY, Aglyamov SR, et al. Sonographic elasticity imaging of acute and chronic deep venous thrombosis in humans. J Ultrasound Med. 2006;25(9):1179–86.

    Article  PubMed  Google Scholar 

  13. Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, et al. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011;141(3):819–26.e1.

    Google Scholar 

  14. Weitzel WF, Kim K, Rubin JM, Wiggins RC, Xie H, Chen X, et al. Feasibility of applying ultrasound strain imaging to detect renal transplant chronic allograft nephropathy. Kidney Int. 2004;65(2):733–6.

    Article  PubMed  Google Scholar 

  15. Khalil MR, Thorsen P, Uldbjerg N. Cervical ultrasound elastography may hold potential to predict risk of preterm birth. Dan Med J. 2013;60(1):A4570.

    PubMed  Google Scholar 

  16. Swiatkowska-Freund M, Preis K. Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound Obstet Gynecol. 2011;38(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  17. Feltovich H, Hall TJ, Berghella V. Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol. 2012;207(5):345–54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Molina FS, Gómez LF, Florido J, Padilla MC, Nicolaides KH. Quantification of cervical elastography: a reproducibility study. Ultrasound Obstet Gynecol. 2012;39(6):685–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7(4):328–39.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carlson LC, Feltovich H, Palmeri ML, del Rio AM, Hall TJ. Statistical analysis of shear wave speed in the uterine cervix. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(10):1651–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Su Y, Du L, Wu Y, Zhang J, Zhang X, Jia X, et al. Evaluation of cervical cancer detection with acoustic radiation force impulse ultrasound imaging. Exp Ther Med. 2013;5(6):1715–9.

    PubMed  PubMed Central  Google Scholar 

  22. Furukawa S, Soeda S, Watanabe T, Nishiyama H, Fujimori K. The measurement of stiffness of uterine smooth muscle tumor by elastography. SpringerPlus 2014;3:294. doi:10.1186/2193-1801-3-294.

  23. Gennisson JL, Muller M, Ami O, Kohl V, Gabor P, Musset D, Tanter M. Shear wave elastography in obstetrics: quantification of cervix elasticity and uterine contraction. In: 2011 IEEE International Ultrasonics Symposium, Orlando, FL. 2011. p. 2094–7. doi: 10.1109/ULTSYM.2011.0519. Accessed 21 Nov 2016.

  24. Tanaka T, Makino S, Saito T, Yorifuji T, Koshiishi T, Tanaka S, et al. Attempt to quantify uterine involution using acoustic radiation force impulse before and after placental delivery. J Med Ultrason. 2010;38(1):21–5.

    Article  Google Scholar 

  25. Hernandez-Andrade E, Aurioles-Garibay A, Garcia M, Korzeniewski SJ, Schwartz AG, Ahn H, et al. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy. J Perinat Med. 2014;42(5):549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peng Q, Jones R, Shishido K, Constantinou CE. Ultrasound evaluation of dynamic responses of female pelvic floor muscles. Ultrasound Med Biol. 2007;33(3):342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.

    Article  CAS  PubMed  Google Scholar 

  28. Emelianov SY, Li PC, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62(8):34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salehi HS, Kumavor PD, Li H, Alqasemi U, Wang T, Xu C, Zhu Q. Design of optimal light delivery system for co-registered transvaginal ultrasound and photoacoustic imaging of ovarian tissue. Photoacoustics. 2015;3(3):114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Salehi HS, Wang T, Kumavor PD, Li H, Zhu Q. Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging. Biomed Opt Express. 2014;5(9):3074–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aguirre A, Guo P, Gamelin J, Yan S, Sanders MM, Brewer M, Zhu Q. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt. 2009;14(5):054014. doi:10.1117/1.3233916.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peng K, He L, Wang B, Xiao J. Detection of cervical cancer based on photoacoustic imaging—the in-vitro results. Biomed Opt Express. 2014;6(i):135–43.

    PubMed  PubMed Central  Google Scholar 

  34. Jokerst JV, Van de Sompel D, Bohndiek SE, Gambhir SS. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics. 2014;2(3):119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarvazyan AP. Elastic properties of soft tissues. In: Levy M, Bass HE, Stern RR, editors. Handbook of elastic properties of solids, liquids and gases, vol. 3. New York: Academic Pres; 2001. p. 107–27.

    Google Scholar 

  36. Sarvazyan A, Egorov V. Mechanical imaging - a technology for 3-D visualization and characterization of soft tissue abnormalities: a review. Curr Med Imaging Rev. 2012;8(1):64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Egorov V, van Raalte H, Sarvazyan A. Vaginal tactile imaging. IEEE Trans Biomed Eng. 2010;57(7):1736–44.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J. 2012;23(4):459–66.

    Article  PubMed  Google Scholar 

  39. Sarvazyan A. Mechanical imaging: a new technology for medical diagnostics. Int J Med Inform. 1998;49(2):195–216.

    Article  CAS  PubMed  Google Scholar 

  40. van Raalte H, Egorov V. Characterizing female pelvic floor conditions by tactile imaging. Int Urogynecol J. 2015;26(4): 607–9 (with video supplement).

    Google Scholar 

  41. van Raalte H, Lucente V, Egorov V. High definition pressure mapping of the pelvic floor muscles during Valsalva manever, voluntary muscle contraction and involuntary relaxation (abstract). In: American Urogynecologic Society 36th Annual Meeting, Seattle, WA, 13–17 Oct 2015.

    Google Scholar 

  42. van Raalte H, Lucente V, Egorov V. Pressure mapping of voluntary and involuntary muscle contraction for assessment of SUI conditions (abstract). In: International Continence Society 45th Annual Meeting. Montreal, Canada, 6–9 Oct 2015.

    Google Scholar 

  43. van Raalte H, Egorov V. Tactile imaging markers to characterize female pelvic floor conditions. Open J Obstet Gynecol. 2015;5(9):505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Egorov V, Sarvazyan AP. Mechanical imaging of the breast. IEEE Trans Med Imaging. 2008;27(9):1275–87.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imaging. 2006;25(10):1329–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbas Shobeiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, K., Egorov, V., Abbas Shobeiri, S. (2017). Emerging Imaging Technologies and Techniques. In: Shobeiri, S. (eds) Practical Pelvic Floor Ultrasonography. Springer, Cham. https://doi.org/10.1007/978-3-319-52929-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52929-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52928-8

  • Online ISBN: 978-3-319-52929-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics