Emerging Imaging Technologies and Techniques

Chapter

Abstract

Ultrasound provides easy access and ease of use for visualization of structures. In pelvic floor ultrasound imaging, the functionality of structures visualized has traditionally been augmented with digital pelvic floor examination. New modalities such as elastography, shear wave elastography, acoustic radiation force impulse, photoacoustic imaging, and vaginal tactile imaging may provide additional insight into the functionality of pelvic floor.

Keywords

Ultrasound elasticity imaging Acoustic radiation force impulse imaging Shear wave elasticity imaging Photoacoustic imaging Imaging of the Vagina Uterus Cervix Functional tactile imaging 

References

  1. 1.
    Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC. Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. In: Kessler LW, editor. Acoustical imaging. Vol. 16. Proceedings of the Sixteenth International Symposium, June 10–12, 1987. New York/London:Plenum Press; 1988. p. 317–27.Google Scholar
  2. 2.
    Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Skovoroda AR, Emelianov SY, Lubinski MA, Sarvazyan AP, O’Donnell M. Theoretical analysis and verification of ultrasound displacement and strain imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(3):302–13.CrossRefGoogle Scholar
  4. 4.
    Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging of the elastic properties of tissue—a review. Ultrasound Med Biol. 1996;22(8):959–77.CrossRefPubMedGoogle Scholar
  5. 5.
    Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography - review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Ribbers H, Lopata RG, Holewijn S, Pasterkamp G, Blankensteijn JD, de Korte CL. Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound Med Biol. 2007;33(4):530–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29(3):427–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim K, Johnson LA, Jia C, Joyce JC, Rangwalla S, Higgins PDR, Rubin JM. Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol. 2008;34(6):902–12.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE, et al. Differentiating benign from malignant solid breast masses with US strain imaging. Radiology. 2007;245(2):401–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Luo J, Fujikura K, Homma S, Konofagou EE. Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts. Ultrasound Med Biol. 2007;33(8):1206–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Rubin JM, Xie H, Kim K, Weitzel WF, Emelianov SY, Aglyamov SR, et al. Sonographic elasticity imaging of acute and chronic deep venous thrombosis in humans. J Ultrasound Med. 2006;25(9):1179–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, et al. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011;141(3):819–26.e1.Google Scholar
  14. 14.
    Weitzel WF, Kim K, Rubin JM, Wiggins RC, Xie H, Chen X, et al. Feasibility of applying ultrasound strain imaging to detect renal transplant chronic allograft nephropathy. Kidney Int. 2004;65(2):733–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Khalil MR, Thorsen P, Uldbjerg N. Cervical ultrasound elastography may hold potential to predict risk of preterm birth. Dan Med J. 2013;60(1):A4570.PubMedGoogle Scholar
  16. 16.
    Swiatkowska-Freund M, Preis K. Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound Obstet Gynecol. 2011;38(1):52–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Feltovich H, Hall TJ, Berghella V. Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol. 2012;207(5):345–54.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Molina FS, Gómez LF, Florido J, Padilla MC, Nicolaides KH. Quantification of cervical elastography: a reproducibility study. Ultrasound Obstet Gynecol. 2012;39(6):685–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7(4):328–39.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carlson LC, Feltovich H, Palmeri ML, del Rio AM, Hall TJ. Statistical analysis of shear wave speed in the uterine cervix. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(10):1651–60.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Su Y, Du L, Wu Y, Zhang J, Zhang X, Jia X, et al. Evaluation of cervical cancer detection with acoustic radiation force impulse ultrasound imaging. Exp Ther Med. 2013;5(6):1715–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Furukawa S, Soeda S, Watanabe T, Nishiyama H, Fujimori K. The measurement of stiffness of uterine smooth muscle tumor by elastography. SpringerPlus 2014;3:294. doi: 10.1186/2193-1801-3-294.
  23. 23.
    Gennisson JL, Muller M, Ami O, Kohl V, Gabor P, Musset D, Tanter M. Shear wave elastography in obstetrics: quantification of cervix elasticity and uterine contraction. In: 2011 IEEE International Ultrasonics Symposium, Orlando, FL. 2011. p. 2094–7. doi:  10.1109/ULTSYM.2011.0519. Accessed 21 Nov 2016.
  24. 24.
    Tanaka T, Makino S, Saito T, Yorifuji T, Koshiishi T, Tanaka S, et al. Attempt to quantify uterine involution using acoustic radiation force impulse before and after placental delivery. J Med Ultrason. 2010;38(1):21–5.CrossRefGoogle Scholar
  25. 25.
    Hernandez-Andrade E, Aurioles-Garibay A, Garcia M, Korzeniewski SJ, Schwartz AG, Ahn H, et al. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy. J Perinat Med. 2014;42(5):549–57.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Peng Q, Jones R, Shishido K, Constantinou CE. Ultrasound evaluation of dynamic responses of female pelvic floor muscles. Ultrasound Med Biol. 2007;33(3):342–52.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Emelianov SY, Li PC, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62(8):34–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Salehi HS, Kumavor PD, Li H, Alqasemi U, Wang T, Xu C, Zhu Q. Design of optimal light delivery system for co-registered transvaginal ultrasound and photoacoustic imaging of ovarian tissue. Photoacoustics. 2015;3(3):114–22.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Salehi HS, Wang T, Kumavor PD, Li H, Zhu Q. Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging. Biomed Opt Express. 2014;5(9):3074–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aguirre A, Guo P, Gamelin J, Yan S, Sanders MM, Brewer M, Zhu Q. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt. 2009;14(5):054014. doi: 10.1117/1.3233916.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Peng K, He L, Wang B, Xiao J. Detection of cervical cancer based on photoacoustic imaging—the in-vitro results. Biomed Opt Express. 2014;6(i):135–43.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Jokerst JV, Van de Sompel D, Bohndiek SE, Gambhir SS. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics. 2014;2(3):119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sarvazyan AP. Elastic properties of soft tissues. In: Levy M, Bass HE, Stern RR, editors. Handbook of elastic properties of solids, liquids and gases, vol. 3. New York: Academic Pres; 2001. p. 107–27.Google Scholar
  36. 36.
    Sarvazyan A, Egorov V. Mechanical imaging - a technology for 3-D visualization and characterization of soft tissue abnormalities: a review. Curr Med Imaging Rev. 2012;8(1):64–73.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Egorov V, van Raalte H, Sarvazyan A. Vaginal tactile imaging. IEEE Trans Biomed Eng. 2010;57(7):1736–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J. 2012;23(4):459–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Sarvazyan A. Mechanical imaging: a new technology for medical diagnostics. Int J Med Inform. 1998;49(2):195–216.CrossRefPubMedGoogle Scholar
  40. 40.
    van Raalte H, Egorov V. Characterizing female pelvic floor conditions by tactile imaging. Int Urogynecol J. 2015;26(4): 607–9 (with video supplement).Google Scholar
  41. 41.
    van Raalte H, Lucente V, Egorov V. High definition pressure mapping of the pelvic floor muscles during Valsalva manever, voluntary muscle contraction and involuntary relaxation (abstract). In: American Urogynecologic Society 36th Annual Meeting, Seattle, WA, 13–17 Oct 2015.Google Scholar
  42. 42.
    van Raalte H, Lucente V, Egorov V. Pressure mapping of voluntary and involuntary muscle contraction for assessment of SUI conditions (abstract). In: International Continence Society 45th Annual Meeting. Montreal, Canada, 6–9 Oct 2015.Google Scholar
  43. 43.
    van Raalte H, Egorov V. Tactile imaging markers to characterize female pelvic floor conditions. Open J Obstet Gynecol. 2015;5(9):505–15.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Egorov V, Sarvazyan AP. Mechanical imaging of the breast. IEEE Trans Med Imaging. 2008;27(9):1275–87.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imaging. 2006;25(10):1329–40.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kang Kim
    • 1
    • 2
  • Vladimir Egorov
    • 3
  • S. Abbas Shobeiri
    • 4
    • 5
  1. 1.Medicine and Heart and Vascular Institute, University of Pittsburgh Medical CenterPittsburghUSA
  2. 2.University of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Technology Development, ARTANN Laboratories, IncWest TrentonUSA
  4. 4.Department of Obstetrics and Gynecology, Gynecologic SubspecialtiesINOVA Women’s Hospital, Virginia Commonwealth UniversityFalls ChurchUSA
  5. 5.Department of BioengineeringGeorge Mason UniversityFairfaxUSA

Personalised recommendations