Skip to main content

An Efficient Algorithm for Total Variation Denoising

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2016)

Abstract

One-dimensional total variation (TV) regularization can be used for signal denoising. We consider one-dimensional signals distorted by additive white Gaussian noise. TV regularization minimizes a functional consisting of the sum of fidelity and regularization terms. We derive exact solutions to one-dimensional TV regularization problem that help us to recover signals with the proposed algorithm. The proposed approach to finding exact solutions has a clear geometrical meaning. Computer simulation results are provided to illustrate the performance of the proposed algorithm for signal denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noised removal algorithms. Phys. D. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chambolle, A., Lions, P.L.: Image recovery via total variational minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  5. Barbero, A., Sra, S.: Fast newton-type methods for total variation regularization. In: ICML (2011)

    Google Scholar 

  6. Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49, pp. 185–212. Springer, New York (2011)

    Google Scholar 

  7. Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An ADMM algorithm for a class of total variation regularized estimation problems. In: IFAC (2012)

    Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  9. Yang, S., Wang, J., Fan, W., Zhang, X., Wonka, P., Ye, J.: An efficient ADMM algorithm for multidimensional anisotropic total variation regularization problems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 641–649 (2013)

    Google Scholar 

  10. Strong, D.M., Chan, T.F.: Exact Solutions to Total Variation Regularization Problems, UCLA CAM Report (1996)

    Google Scholar 

  11. Strong, D.M., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19, 165–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)

    Google Scholar 

  13. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29(1), 1–65 (2001)

    Google Scholar 

  14. Makovetskii, A. Kober, V.: Modified gradient descent method for image restoration. In: Proceedings of SPIE Applications of Digital Image Processing XXXVI, vol. 8856 (2013). 885608-1

    Google Scholar 

  15. Makovetskii, A., Kober, V.: Image restoration based on topological properties of functions of two variables. In: Proceedings of SPIE Applications of Digital Image Processing XXXV, vol. 8499 (2012). 84990A

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Education and Science of Russian Federation (grant 2.1766.2014К).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artyom Makovetskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Makovetskii, A., Voronin, S., Kober, V. (2017). An Efficient Algorithm for Total Variation Denoising. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52920-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52919-6

  • Online ISBN: 978-3-319-52920-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics