The Management of Carpal Scaphoid Fractures and Nonunions and the Role of Capacitive Systems

  • Pier Paolo Borelli


Scaphoid fractures and nonunions occur commonly in young and adult patients but, generally in the athlete, and even more in combat sports, should be treated promptly and appropriately to avoid undesired late complications.

X-ray-specific views and CT scan, cone beam CT when possible, are essential for a “global” and three-dimensional assessment of fractures and nonunions.

MRI may be helpful to obtain further prognostic informations so that an appropriate (early treatment in fresh fractures and delayed union and optimal choice of bone grafting in nonunions reconstructive surgery) treatment strategy can be planned.

Cast immobilisation in acute, undisplaced scaphoid fractures can be considered, in particular circumstances, a valid alternative to surgical treatment and a less aggressive approach, especially if supported by an early use of capacitive systems when justified by CT and MRI, and can be given as an option even in athletes with high-level sport activity. Anyway, limiting the immobilisation period in the athlete will allow earlier restoration of pre-injury level function and eventual return to sport activity, and nowadays the trend is to recommend a minimally invasive surgical approach with a cannulated headless compression screw even in undisplaced fractures. Percutaneous techniques with or without arthroscopy assistance have been advocated as less invasive surgical approaches that may have an added benefit in the athlete, but a mini-open approach to scaphoid tuberosity can facilitate screw placement. Displaced and unstable fractures are usually approached with a volar or dorsal open technique to achieve an anatomic reduction before screw placement. Regardless of what type of technique, open or percutaneous, screw placement from the volar approach is not always feasible and requires to know the morphology of the scaphoid and location and spatial orientation of fractures and nonunions for an appropriate stable screw fixation. In junctional or proximal pole nonunions, not amenable for screw fixation, a stable fixation can be obtained with Kirschner wires as well. The advent of arthroscopy has modified the approach to the management of scaphoid nonunions proving once again that, regardless of the vascular status, it is the stability of fixation, by means of screw or K wires, which creates the conditions for the revascularisation of the proximal pole, so avascular changes in the proximal pole are not an absolute indication for a vascularised bone graft (VBG). A minimally invasive open volar approach can be competitive with the arthroscopic bone graft technique (ABG), with the advantage that harvesting the graft from the radius, you may have a radius metaphyseal “core decompression” effect that can be early combined with a capacitive system stimulation of the osteogenesis. Nowadays a NVBG, open or arthroscopic, may be a valid alternative to the VBG.


  1. 1.
    Shively RA, Sundaram M. Ununited fractures of the scaphoid in boxers. A therapeutic dilemma. Am J Sports Med. 1980;8(6):440–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Clay NR, Dias JJ, Cistigan PS, Greg PJ, Barton NJ. Need the thumb be immobilised in scaphoid fractures? A randomised prospective trial. J Bone Joint Surg Br. 1991;73:828–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Dias JJ. Undisplaced scaphoid fractures. In: Articular injury of the wrist. FESSH 2014. Instructional Course Book. New York: Thieme; 2014.Google Scholar
  4. 4.
    Borelli PP. Il trattamento con sistemi capacitivi di ultima generazione nelle fratture e pseudoartrosi di scafoide carpale. Chirugia della Mano. 2014;51(1):9–17.Google Scholar
  5. 5.
    Chan KW, McAdams TR. Central screw placement in percutaneous screw scaphoid fixation: a cadaveric comparison of proximal and distal techniques. J Hand Surg. 2004;29A:74–9.CrossRefGoogle Scholar
  6. 6.
    Levitz S, Ring D. Retrograde (volar) scaphoid screw insertion: a quantitative computed tomographic analysis. J Hand Surg. 2005;30A:543–8.CrossRefGoogle Scholar
  7. 7.
    Borelli PP. Fratture e Pseudoartrosi dello scafoide carpale. In: Landi A, Catalano F, Luchetti R, editors. Trattato di Chirurgia della Mano. Roma: Verducci Editore; 2007. p. 255–90.Google Scholar
  8. 8.
    Meermans G, Verstreken F. A comparison of 2 methods for Scaphoid central screw placement from a volar approach. J Hand Surg. 2011;36A:1669–74.CrossRefGoogle Scholar
  9. 9.
    Haddad FS, Goddard NJ. Acute percutaneous scaphoid fixation. A pilot study. J Bone Joint Surg. 1998;80B:95–9.Google Scholar
  10. 10.
    Haddad FS, Goddard NJ. Acute percutaneous scaphoid fixation using a cannulated screw. Chir Main. 1998;17:119–26.PubMedGoogle Scholar
  11. 11.
    Meermans G, Verstreken F. Percutaneous transtrapezial fixation of acute scaphoid fractures. J Hand Surg. 2008;33B:791–6.CrossRefGoogle Scholar
  12. 12.
    Geurts G, van Riet R, Meermans G, Verstreken F. Incidence of scaphotrapezial arthritis following volar percutaneous fixation of nondisplaced scaphoid waist fractures using a transtrapezial approach. J Hand Surg. 2011;36A:1753–8.CrossRefGoogle Scholar
  13. 13.
    Luria S, Lenart L, Lenart B, Peleg E, Kastelec M. Optimal fixation of oblique scaphoid fractures: a cadaver model. J Hand Surg. 2012;37:1400–4.CrossRefGoogle Scholar
  14. 14.
    Meermans G, Verstreken F. Letter regarding optimal fixation of oblique scaphoid fracture: a cadaver model. J Hand Surg. 2012;37A:1957.CrossRefGoogle Scholar
  15. 15.
    McCallister WV, Knight J, Kaliappan R, Trumble TE. Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study. J Bone Joint Surg. 2003;85A:72–7.CrossRefGoogle Scholar
  16. 16.
    Jeon I-H, Micic ID, Oh C-W, Park B-C, Kim P-T. Percutaneous screw fixation for scaphoid fracture: a comparison between the dorsal and the volar approaches. J Hand Surg. 2009;34A:228–36.CrossRefGoogle Scholar
  17. 17.
    Soubeyrand M, Biau D, Mansour C, Mahjoub S, Molina V, Gagey O. Comparison of percutaneous dorsal versus volar fixation of scaphoid waist fractures using a computer model in cadavers. J Hand Surg. 2009;34A:1838–44.CrossRefGoogle Scholar
  18. 18.
    Luria S, Hoch S, Liebergall M, Mosheiff R, Peleg E. Optimal fixation of acute scaphoid fractures: finite element analysis. J Hand Surg. 2010;35A:1246–50.CrossRefGoogle Scholar
  19. 19.
    Borelli PP. Fixing the carpal scaphoid nonunion. Arch Ortop Traumatol. 2015;126:1–14.Google Scholar
  20. 20.
    Compson JP. The anatomy of acute scaphoid fractures: a three-dimensional analysis of patterns. J Bone Joint Surg. 1998;80B:218–24.Google Scholar
  21. 21.
    Nakamura R, Imaeda T, Horii E, Miura T, Hayakawa N. Analysis of scaphoid fracture displacement by three dimensional computed tomography. J Hand Surg [Am]. 1991;16A:485–92.CrossRefGoogle Scholar
  22. 22.
    Bujize GA, Jorgsholm P, Thomsen NO, Bjiorkman A, Besjakov J, Ring D. Diagnostic performance of radiographs and computed tomography for displacement and instability of acute scaphoid waist fractures. J Bone Joint Surg Am. 2012;94:1967–74.CrossRefGoogle Scholar
  23. 23.
    Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw. J Bone Joint Surg. 1984;66B:114–23.CrossRefGoogle Scholar
  24. 24.
    Slade JF, Gutow AP, Geissler WB. Percutaneous internal fixation of scaphoid fractures via an arthrosopically assisted dorsal approach. J Bone Joint Surg Am. 2002;84A(Suppl 2):21–36.CrossRefGoogle Scholar
  25. 25.
    Mathoulin C. Management of concomitant scaphoid fractures. In: del Pinal F, Mathoulin C, Luchetti R, editors. Arthroscopic management of distal radial fractures. Berlin: Springer; 2010.Google Scholar
  26. 26.
    Caloia MF, Gallino RN, Caloia H, et al. Incidence of ligamentous and other injuries associated with scaphoid fractures during arthroscopically assisted reduction and percutaneous fixation. Arthroscopy. 2008;24:754–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Geissler WB. Arthroscopic management of scaphoid fractures in athlete. Hand Clin. 2009;25:359–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Geissler WB, Adams JE, Bindra RR, Lanzinger WD, Slutsky DJ. Scaphoid fractures: what’s hot, what’s not. J Bone Joint Surg Am. 2012;94:169–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Krimmer H. Management of acute fractures and nonunions of the proximal pole of the scaphoid. J Hand Surg (Br). 2002;27:245–8.CrossRefGoogle Scholar
  30. 30.
    Drac P, Cizmar I, Hrbeck J. Is the dorsal percutaneous approach well founded for osteaosynthesis of scaphoid fractures? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009;153(3):225–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Belsky MR, Matthew IL, Ruchelsman DE. Scaphoid fracture in the elite athelete. Hand Clin. 2012;28:269–78.PubMedCrossRefGoogle Scholar
  32. 32.
    McQueen MM, Gelbke MK, Wakefield A, et al. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomised study. J Bone Joint Surg Br. 2008;90(1):66–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Belsky MR. Commentary: scaphoid fracture in an elite or professional baseball player. Hand Clin. 2012;28:279–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Carlson MG. Commentary on scaphoid fractures in basketball. Hand Clin. 2012;28:281–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Husband JB. Return to play after scaphoid fractures in hockey players. Hand Clin. 2012;28:285.PubMedCrossRefGoogle Scholar
  36. 36.
    Gaston RC. Scaphoid fractures in professional football players. Hand Clin. 2012;28:283–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Riester JN, Baker BE, Mosher JF, Lowe D. A review of scaphoid fracture healing in competitive athletes. Am J Sports Med. 1985;13(3):159–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Rancy SK, Zelken JA, Lipman JD, Wolfe SW. Scaphoid proximal pole fracture following headless screw fixation. J Wrist Surg. 2016;5:71–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Divelbiss BJ, Adams BD. Electrical and ultrasound stimulation for scaphoid fractures. Hand Clin. 2001;17(4):697–701.PubMedGoogle Scholar
  40. 40.
    Hausman MR. Low-intensity ultrasound and ante-grade screw fixation in the treatment of complex scaphoid fractures. ASSH Annual Meeting Presentation, Anaheim CA; 1991.Google Scholar
  41. 41.
    Garcia RM, Ruch DS. Management of scaphoid fractures in the athlete: open and percutaneous fixatio. Sports Med Arthrosc Rev. 2014;22(1):22–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Russe O. Fracture of the carpal navicular. Diagnosis, non-operative treatment and operative treatment. JBJS. 1960;42A(5):759–68.CrossRefGoogle Scholar
  43. 43.
    McLauglin HL, Parkes JC. Fracture of the carpal navicular bone: gradations in therapy based upon pathology. J Trauma. 1969;9:311–9.CrossRefGoogle Scholar
  44. 44.
    Cooney WP, Dobyns JH, Linscheid RL. Fractures of the scaphoid: a rationale approach to management. Clin Orthop Relat Res. 1980;149:90–7.Google Scholar
  45. 45.
    Garcia-Elias M, Lluch A. Partial excision of scaphoid: is it ever indicated? Hand Clin. 2001;17(4):687–95.PubMedGoogle Scholar
  46. 46.
    Schernberg F. Classifications des fractures du scaphoid carpien. Etudeanatomo-radiologique des traits. Rev Chir Orthop Reparatrice Appar Mot. 1988;74:693–5.PubMedGoogle Scholar
  47. 47.
    Berg PWT, Drijkoningen T, Strackee SD, Buijze GA. Classification of acute scaphoid Fractures: a systematic literature review. J Wrist Surg. 2016;5:152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Marsh JL, Slongo TF, Agel J, et al. Fracture and Dislocation classification compendium – 2007: orthopedic trauma association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 Suppl):S1–S133.Google Scholar
  49. 49.
    Dias JJ, Sing HP. Displaced fractures of the waist of the scaphoid. J Bone Joint Surg. 2011;93-B(11):1433–9.CrossRefGoogle Scholar
  50. 50.
    Sanders WE. Evaluation of the humpback scaphoid by computed tomography in the longitudinal axial plane of the scaphoid. J Hand Surg [Am]. 1988;13(2):182–7.CrossRefGoogle Scholar
  51. 51.
    Grewal R, King JW. An evidence based approach to the management of acute scaphoid fractures. JHS. 2009;34:732–4.Google Scholar
  52. 52.
    Grewal R, Lutz K, McDermid J, Suh N. Proximal pole fractures. A computed tomography assessment of outcomes. J Hand Surg [Am]. 2016;41(1):54–8.CrossRefGoogle Scholar
  53. 53.
    Jenkins PJ, Slade K, Huntley JS, et al. A comparative analysis of the accuracy, diagnostic uncertainty and cost of imaging modalities in suspected scaphoid fractures. Injury. 2008;39:768–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Borelli PP, Olappi G, Robecchi D, Motta C. Studio con Tc delle fratture e pseudoartrosi dello scafoide carpale. Radiol Med. 1990;79:163–6.PubMedGoogle Scholar
  55. 55.
    Grazioli L, Olivetti L, Borelli PP, Motta C. Studio con RM dello scafoide carpale: anatomia normale. Radiol Med. 1990;79:99–102.PubMedGoogle Scholar
  56. 56.
    Fox MG, Wang TD, Chhabra AB. Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid scaphoid proximal pole avascular necrosis and predicting surgical outcome. Skelet Radiol. 2015;44:1671–8.CrossRefGoogle Scholar
  57. 57.
    Perlik PC, Guilford WB. Magnetic resonance imaging to assess vascularity of scaphoid nonunions. J Hand Surg [Am]. 1991;16A(3):479–84.CrossRefGoogle Scholar
  58. 58.
    Sakuma M, Nakamura R, Imaeda T. Analysis of proximal fragment sclerosis and surgical outcome of scaphoid non-union by magnetic resonance imaging. J Hand Surg. 1995;20B(2):201–5.CrossRefGoogle Scholar
  59. 59.
    Trumble TE. Avascular necrosis after scaphoid fracture: a correlation of magnetic resonance imaging and histology. J Hand Surg [Am]. 1990;15A(4):557–64.CrossRefGoogle Scholar
  60. 60.
    Desser TS, McCarthy S, Trumble TE. Scaphoid fractures and Kienbock’s disease of the lunate: MR imaging with histopathologic correlation. Magn Reson Imaging. 1990;8:357–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Fox MG, Gaskin CM, Chhabra AB, Anderson MW. Assessment of scaphoid viability with MRI: a reassessment of findings on unenhanced MR images. Am J Roentgenol. 2010;195:281–6.CrossRefGoogle Scholar
  62. 62.
    Cerezal L, Abascal F, Canga A, Garcia-Valtuille R, Bustamante M, del Pinal F. Usefulness of gadolinium enhanced MR imaging in the evaluation of the vascularity of scaphoid nonunions. Am J Roentgenol. 2000;174:141–9.CrossRefGoogle Scholar
  63. 63.
    Singh AK, Davis TRC, Dawson JS, Oni JA, Downing ND. Gadolinium enhanced MR assessment of proximal fragment vascularity in nonunions after scaphoid fracture: does it predict the outcome of reconstructive surgery? J Hand Surg (Br). 2004;29B(5):444–8.CrossRefGoogle Scholar
  64. 64.
    Donati OF, Zanetti M, Nagy L, Bode B, Schweizer A, Pfirrmann CWA. Is dynamic gadolinium enhancement needed in MR imaging 41. For the preoperative assessment of scaphoidal viability in patients with scaphoid nonunion? Radiology. 2011;260(3):808–16.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith EJ, et al. Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation. Int J CARS. 2012;7:433–44.CrossRefGoogle Scholar
  66. 66.
    De Cock J, et al. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skelet Radiol. 2012;41:93–6.CrossRefGoogle Scholar
  67. 67.
    Ramdhian-Wihlm R, et al. Cone-beam computed tomography arthrography:an innovative modality for the evaluation of wrist ligament and cartilage injuries. Skelet Radiol. 2012;41:963–9.CrossRefGoogle Scholar
  68. 68.
    Singh HP, Taub N, Dias JJ. Management of displaced fractures of the waist of the scaphoid: meta-analysis of comparative studies. Injury. Int J Care Inj. 2012;43:933–9.CrossRefGoogle Scholar
  69. 69.
    Zlotolow DA, Knutsen E, Yao J. Optimization of volar percutaneous fixation for scaphoid waist fractures using traction, positioning, imaging and angiocatheter guide. JHS. 2011;36:916–21.Google Scholar
  70. 70.
    Geissler WB, Hammit MD. Arthroscopic aided fixation of scaphoid fractures. Hand Clin. 2001;17(4):575–88. viiiPubMedGoogle Scholar
  71. 71.
    Slade J, Merrell G. Dorsal approach to percutaneous fixation of scaphoid fractures with arthroscopic assistance. In: Slutsky DJ, Slade J, editors. The scaphoid. 1st ed. New York: Thieme; 2011. p. 99–110.Google Scholar
  72. 72.
    Slutsky DJ. Arthroscopically assisted percutaneous scaphoid screw insertion. In: Slutsky DJ, Slade J, editors. The scaphoid. 1st ed. New York: Thieme; 2011. p. 122–30.Google Scholar
  73. 73.
    Menapace KA, Larabee L, Arnoczky SP, et al. Anatomic placement of the Herbert-Whipple screw in scaphoid fractures: a cadaver study. J Hand Surg [Am]. 2001;26(5):883–92.CrossRefGoogle Scholar
  74. 74.
    Jeon IH, et al. Percutaneous screw fixation for scaphoid fractures: a comparison between the dorsal and volar approaches. JHS. 2009;34:228–36.Google Scholar
  75. 75.
    Naranje S, Kotwal PP, Shamshery P, Gupta V, Nag HL. Percutaneous fixation of selected scaphoid fractures by dorsal approach. Int Orthop. 2010;34:997–1003.PubMedCrossRefGoogle Scholar
  76. 76.
    Saint M, Oni G, Wong C, Seng MK, Lajoie AS, Gupta A. Dorsal percutaneous cannulated screw fixation for delayed union and nonunion of the scaphoid. Plast Reconstr Surg. 2011;128(2):467–73.CrossRefGoogle Scholar
  77. 77.
    Adamany DC, Mikola EA, Fraser BJ. Percutaneous fixation of the scaphoid through a dorsal approach: an anatomic study. J Hand Surg. 2008;33(3):327–31.CrossRefGoogle Scholar
  78. 78.
    Matti H. Uber die behandlung der Naviculare fraktur durch plombierung mit spongiosa. Z Chir. 1937;64:2353.Google Scholar
  79. 79.
    Fisk GR. Non-union of the carpal scaphoid treated by wedge grafting. J Bone Joint Surg. 1984;66B:277–80.Google Scholar
  80. 80.
    Fernandez DL. A technique for anterior wedge-shaped graft for scaphoid non-unions with carpal instability. JHS. 1984;9A:733–7.Google Scholar
  81. 81.
    Fernandez DL. Anterior bone grafting and conventional lag screw fixation to treat scaphoid nonunions. JHS. 1990;15A:140–7.Google Scholar
  82. 82.
    Bishop AT. Vascularized bone grafting. In: Green DP, Hotchkiss RN, Pederson WC, editors. Operative hand surgery. New York: Churchill Livingstone; 1999. p. 1221–50.Google Scholar
  83. 83.
    Hori Y, Tamai S, Okuda H, Sakamoto H, Takita T, et al. Blood vessel transpalntation to bone. J Hand Surg. 1979;4:23–5.CrossRefGoogle Scholar
  84. 84.
    Fernandez DL, Eggli S. Nonunion of the scaphoid. Revascularization of the proximal pole with implantation of a vascular bundle and bone grafting. J Bone Joint Surg. 1995;6A:883–9.CrossRefGoogle Scholar
  85. 85.
    Gabl M, Pechlaner S, Zimmermann R. Free vascularized iliac bone graft for the treatment of scaphoid nonunion with avascular proximal fragment. Oper Orthop Traumatol. 2009;21(45):386–95.PubMedCrossRefGoogle Scholar
  86. 86.
    Del Pinal F, Garcia-Bernal FJ, Delgado J, Sanmartin M, Regalado J. Reconstruction of the distal radius facet by a free vascularized osteochondral autograft: anatomic study and report of a patient. J Hand Surg [Am]. 2005;30(6):1200–10.Google Scholar
  87. 87.
    Arora R, Lutz M, Zimmermann R, Pechlaner S, Gabl M. Free-vascularized medial femoral condyle bone transfer in the treatment of scaphoid nonunions. Plast Reconstr Surg. 2010;125(4):1176–84.CrossRefGoogle Scholar
  88. 88.
    Sotereanos D, et al. A capsular based vascularized distal radius graft for proximal pole scaphoid pseudoarthrosis. JHS. 2006;31:580–7.Google Scholar
  89. 89.
    Kuhlmann JN, Mimoun M, Boabighi A, Baux S. Vascularized bone graft pedicled on the volar carpal artery for non-union of the scaphoid. J Hand Surg (Br). 1987;12(2):203–10.CrossRefGoogle Scholar
  90. 90.
    Haerle M, Schaller HE, Mathoulin C. Vascular anatomy of the palmar surfaces of distal radius and ulna: its relevance to pedicled bone grafts at the distal palmar forearm. J Hand Surg. 2003;28(B):131–6.CrossRefGoogle Scholar
  91. 91.
    Mathoulin C. Vascularized bone graft from the palmar carpal artery for treatment of scaphoid non-union. J Hand Surg [Am]. 1998;23B:318–23.CrossRefGoogle Scholar
  92. 92.
    Zeidemberg JS, Angrigiani C. A new vascularized bone graft for scaphoid nonunion. J Hand Surg [Am]. 1991;16A:474–8.CrossRefGoogle Scholar
  93. 93.
    Chang MA, Bishop AT, Moran SL, Shin AY. The outcomes and complications of 1,2-intercompartmental supraretinacular artery pedicled vascularized bone grafting of scaphoid nonunions. J Hand Surg [Am]. 2006;31(3):387–96.CrossRefGoogle Scholar
  94. 94.
    Steinmann SP, Bishop AT, Berger RA. Use of the 1,2 intercompartmental supraretinacular artery as a vascularized pedicle bone graft for difficult scaphoid non-union. J Hand Surg [Am]. 2002;27:391–401.CrossRefGoogle Scholar
  95. 95.
    Gras M, Mathoulin C. Vascularized bone graft pedicled on the volar carpal artery from the distal Radius as primary procedure for scaphoid nonunion. Orthop Traumatol Surg Res. 2011;97:800–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Taleisnik J, Peters G, et al. Treatment of ununited scaphoid fractures by pulsed electromagnetic field and cast. J Hand Surg [Am]. 1986;11:344.CrossRefGoogle Scholar
  97. 97.
    Slutsky DJ, Trevare J. Use of arthroscopy for the treatment of scaphoid fractures. Hand Clin. 2014;30:91–103.PubMedCrossRefGoogle Scholar
  98. 98.
    Chu P, Shih J. Arthroscopically assisted use of injectable bone graft substitutes for management of scaphoid nonunions. Arthroscopy. 2011;27(1):31–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Ho PC. Arthroscopic bone grafting in scaphoid non union & delayed union. In: Slutsky DJ, Slade JF, editors. The scaphoid. New York: Thieme; 2010. p. 131–43.Google Scholar
  100. 100.
    Slade JF, Gillon T. Retrospective review of 234 scaphoid fractyres and nonunions treated with arthroscopy for union and complications. Scand J Surg. 2008;97:280–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Wong WYC, Ho PC. Minimal Invasive management of scaphoid fractures: from Fresch to nonunion. Hand Clin. 2011;27:291–307.PubMedCrossRefGoogle Scholar
  102. 102.
    Delgado PJ. Arthroscopic management of scaphoid nonunion. Round table session: scaphoid nonunion. Indication and Result. Fessh, Santander; 2016.Google Scholar
  103. 103.
    Ekker J. Proximal Scaphoid nonunion. In: Mathoulin C, Ekker J, editors. EWAS-APWA Symposium III: Unresolved problems. East meet west. Santander: Fessh; 2016.Google Scholar
  104. 104.
    Herbert TJ. The fractured scaphoid. St. Louis: Quality Med. Publ; 1990.Google Scholar
  105. 105.
    del Pinal F. Treatment of nonunionon f the scaphoid by a limited combined approach. J Bone Joint Surg. 2001;83B:78–82.CrossRefGoogle Scholar
  106. 106.
    Capo JT, Orillaza NS, Slade JF. Percutaneous management of scaphoid nonunions. Tech Hand Up Extrem Surg. 2009;13:23–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Herbert TJ, Fisher WE, Leicester AW. The Herbert bone screw: a ten year perspective. J Hand Surg. 1992;17B(4):415–9.CrossRefGoogle Scholar
  108. 108.
    Beadel GP, et al. Interfragmentary compression across a simulated scaphoid fracture-analysis of 3 screws. J Hand Surg. 2004;29A:273–8.CrossRefGoogle Scholar
  109. 109.
    Hausmann JT, et al. Interfragmentary compression forces of scaphoid screws in a sawbone cylinder model. Injury. 2007;38:763–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Gregory JJ, et al. Comparison of Herbert and Acutrak screws in the treatment of scaphoid nonunion and delayed union. Acta Orthop Belg. 2008;74:761–5.PubMedGoogle Scholar
  111. 111.
    Shin AY. Volar percutaneous fixation of stable scaphoid fractures. Atlas Hand Clin. 2003;8:19–28.CrossRefGoogle Scholar
  112. 112.
    Inoue G, Shionoya K. Herbert screw fixation by limited access for acute fractures of the scaphoid. JBJS. 1997;79B:418–21.CrossRefGoogle Scholar
  113. 113.
    Kamineni S, Lavy CB. Precutaneous fixation of scaphoid fractures: an anatomic study. J Hand Surg. 1999;24B(1):85–8.CrossRefGoogle Scholar
  114. 114.
    Compson JP. Imaging the position of a screw within the scaphoid. J Hand Surg. 1993;18B:716–24.CrossRefGoogle Scholar
  115. 115.
    Compson JP, Waterman JK, Hetaley FW. The radiological anatomy of the scaphoid. J Hand Surg. 1994;19B:183–7.CrossRefGoogle Scholar
  116. 116.
    Botte JM, Gelberman RH. Modified technique for Herbert screw insertion in fractures of the scaphoid. JHS. 1987;12A(1):149–50.Google Scholar
  117. 117.
    Chun S, Wicks BP, Meyerdierks E, Werner F, Mosher JF Jr. Two modification for insertion of the Herbert screw in the fractured scaphoid. JHS. 1990;15A:669–71.Google Scholar
  118. 118.
    Leventhal EL, Wolfe SW, Walsh EF, et al. A computerized approach to the optimal screw axis location and orientation in the scaphoid bone. J Hand Surg [Am]. 2009;34:677–84.CrossRefGoogle Scholar
  119. 119.
    Borelli PP, Olappi G, Robecchi D, Motta C. L’osteosintesi dello scafoide carpale con vite di Herbert. Considerazioni sul risultato radiografico. Rivista Chirurgia della mano. 1990;26(2-3):143–9.Google Scholar
  120. 120.
    Dodds SD, Panjabi MM, Slade JF. Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation. J Hand Surg [Am]. 2006;31(3):405–13.CrossRefGoogle Scholar
  121. 121.
    Pichler W, Windisch G, Schaffler G, Heidari N, Dorr K, Grechenig W. Computer-assisted 3-dimensional anthro- pometry of the scaphoid. Orthopedics. 2010;33(2):85–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Ceri N, Korman E, Gunal I, Tetik S. The morphological and morphometric features of the scaphoid. J Hand Surg (Br). 2004;29(4):393–8.CrossRefGoogle Scholar
  123. 123.
    Smith ML, Bain GI, Chabrel N, Turner P, Carter C. Using computer tomography to assist with diagnosis of avascular necrosis complicating chronic scaphoid nonunion. JHS. 2009;34A:1037–43.Google Scholar
  124. 124.
    Dowing ND, Oni JA, Davis TRC, Vu TQ, et al. The relationship between proximal pole blood flow and the subjective assessment of increased density of the proximal pole in acute scaphoid fractures. J Hand Surg. 2002;3:402.CrossRefGoogle Scholar
  125. 125.
    Dowson JS, Martel AL, Davis TRC. Scaphoid blood flow and acute fracture healing. A dynamic MRI study with enhancement with Gadolinium. J Bone Joint Surg Br. 2001;83:809–14.CrossRefGoogle Scholar
  126. 126.
    Slade JF, Geissler WB, Gutow AP, Merrell GA. Percutaneous internal fixation of selected scaphoid nonunions with an arthroscopically assisted dorsal approach. J Bone Joint Surg Am. 2003;85(Suppl 4):20–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Kim JK, Kim JO, Lee SY. Volar percutaneous screw fixation for scaphoid waist delayed union. Clin Orthop Relat Res. 2010;468:1066–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Poggetti A, et al. Treatment of scaphoid waist nonunion using olecranon bone graft and Stryker Asnis micro cannulated screw: a retrospective study-80 case studies and 6 years of follow up. J Wrist Surg. 2015;4:194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Slade JF, Dodds SD. Minimally invasive management of scaphoid nonunions. Clin Orthop Relat Res. 2006;445:108–19.PubMedGoogle Scholar
  130. 130.
    Herbert TJ. Does the presence of avascular necrosis alter your management? Do you use bone grafts? In: Günal I, Barton N, Çalli I, editors. Current management of scaphoid fractures. Twenty questions answered. London: Royal Society of Medicine Press Ltd; 2002. p. 83–7.Google Scholar
  131. 131.
    Amadio PC. Does the presence of avascular necrosis alter your management? Do you use bone grafts? In: Günal I, Barton N, Çalli I, editors. Current management of scaphoid fractures. Twenty questions answered. London: Royal Society of Medicine Press Ltd; 2002. p. 83–7.Google Scholar
  132. 132.
    Inoue G. Does the presence of avascular necrosis alter your management? Do you use bone grafts? In: Günal I, Barton N, Çalli I, editors. Current management of scaphoid fractures. Twenty questions answered. London: Royal Society of Medicine Press Ltd; 2002. p. 83–7.Google Scholar
  133. 133.
    Krimmer H. Does the presence of avascular necrosis alter your management? Do you use bone grafts? In: Günal I, Barton N, Çalli I, editors. Current management of scaphoid fractures. Twenty questions answered. London: Royal Society of Medicine Press Ltd; 2002. p. 83–7.Google Scholar
  134. 134.
    Saedén B. Does the presence of avascular necrosis alter your management? Do you use bone grafts? In: Günal I, Barton N, Çalli I, editors. Current management of scaphoid fractures. Twenty questions answered. London: Royal Society of Medicine Press Ltd; 2002. p. 83–7.Google Scholar
  135. 135.
    Jarrett P, Kinzel V, Stoffel K. A biomechanical comparison of scaphoid fixation with bone grafting using iliac bone or distal radius bone. J Hand Surg [Am]. 2007;32(9):1367–73.CrossRefGoogle Scholar
  136. 136.
    Cohen MS, Jupiter JB, Fallahi K, Shukla SK. Scaphoid waist nonunion with humpback deformity treated without structural bone graft. J Hand Surg [Am]. 2013;38(4):701–5.CrossRefGoogle Scholar
  137. 137.
    Garg B, Goyal T, Kotwal PP, Sankineani SR, Tripathy SK. Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: a comparative study. Musculoskelet Surg. 2013;97(2):109–14.PubMedCrossRefGoogle Scholar
  138. 138.
    Ricardo M. The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union. Int Orthop. 2006;30(2):123–7.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Leixnering M, Pezzei C, et al. First experiences with a new adjustable plate for osteosynthesis of scaphoid nonunions. J Trauma. 2011;71:933–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Ghoneim A. The unstable nonunited scaphoid waist fracture: results of treatment by open reduction, anterior wedge grafting, and internal fixation by volar buttress plate. J Hand Surg. 2011;36A:17–24.CrossRefGoogle Scholar
  141. 141.
    Kauer JMG. The radioscaphoid ligament (RSL). Acta Anat. 1984;120:36–7.Google Scholar
  142. 142.
    Herbert TJ, Filan SL. Proximal scaphoid nonunion ostheosinthesis. Handchir Mikrochir Chir. 1999;31:169–73.CrossRefGoogle Scholar
  143. 143.
    Filan SL, Herbert TJ. Herbert screw fixation of scaphoid fractures. J Bone Joint Surg Br. 1996;78(4):519–29.PubMedCrossRefGoogle Scholar
  144. 144.
    Chantelot C, Frebault C, Limousin M, Robert G, Migaud H, Fontaine C. Long-term outcome of non-vascularized grafts for carpal scaphoid nonunion: 58 cases with 8.8-year follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2005;91(8):724–31.PubMedCrossRefGoogle Scholar
  145. 145.
    Krimmer H, Kremling E, van Schoonhoven J, et al. Proximal scaphoid pseudoarthrosis. Handchir Mikrochir Plast Chir. 1999;31:174–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Küntscher M, Tränkle M, Sauerbier M, et al. Versorgung proximaler Kahnbeinpseudarthrosen und -frakturen mit der Mini-Herbert-Schraube uber einen dorsalen Zugang. Unfallchirurg. 2001;104:813–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Megerle KX, Müller M, Germann G, Sauerbier M. Treatment of scaphoid nonunions of the proximal third with conven- tional bone grafting and mini-herbert screws: an analysis of clinical and radiological results. J Hand Surg Eur Vol. 2008;33(2):179–85.PubMedCrossRefGoogle Scholar
  148. 148.
    Matsuki H, et al. Non-vascularized bone graft with Herbert-type screw fixation for proximal pole scaphoid nonunion. J Orthop Sci. 2011;16:749–55.PubMedCrossRefGoogle Scholar
  149. 149.
    Malizos KN, Dailiana ZH, Kirou M, Vragalas V, et al. Longstanding nonunions of scaphoid fractures with bone loss: successful reconstruction with vascularized bone grafts. J Hand Surg. 2001;26B:330.CrossRefGoogle Scholar
  150. 150.
    Tsai TT, Chao EK, Tu YK, Chen AC, Lee MS, Ueng SW. Management of scaphoid nonunion with avascular necrosis using 1, 2 intercompartmental supraretinacular arterial bone grafts. Chang Gung Med J. 2002;25(5):321–8.PubMedGoogle Scholar
  151. 151.
    Doi K, Oda T, Soo-Heong T, Nanda V. Free vascularized bone graft for non-union of the scaphoid. J Hand Surg. 2000;25A:507–9.CrossRefGoogle Scholar
  152. 152.
    Shin AY, Bishop AT. Vascularized bone grafts for scaphoid nonunion and Kienböck’s disease. Orthop Clin N Am. 2001;30(2):263–9.CrossRefGoogle Scholar
  153. 153.
    Higgins JP, Burger H. Proximal scaphoid arthroplasty using the medial femoral trochlea flap. J Wrist Surg. 2013;2:228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Houdek MT, Matsumoto JM, Morris JM, Bishop AT, Shin AY. Technique for 3-dimensional (3D) modeling of osteoarticular medial femoral condyle vascularized grafting to replace the proximal pole of unsalvagable scaphoid nonunions. Tech Hand Up Extrem Surg. 2016;20(3):117–24.PubMedCrossRefGoogle Scholar
  155. 155.
    Rhee PC, Jones DB Jr, Shin AY, Bishop AT. Evaluation and treatment of scaphoid nonunions: a critical analysis review. JBJS Rev. 2014;22(7):01874474-201402070-00006.Google Scholar
  156. 156.
    Capito AE, Higgings JP. Scaphoid overstuffing: the effects of the dimensions of scaphoid reconstruction on scapholunate alignment. J Hand Surg [Am]. 2013;38(12):2419–25.CrossRefGoogle Scholar
  157. 157.
    Burger HK, Windhofer C, Gaggl AJ, Higgings JP. Vascularized medial femoral trochlea osteocartilaginous flap reconstruction of proximal pole scaphoid nonunions. J Hand Surg [Am]. 2013;38(4):690–700.CrossRefGoogle Scholar
  158. 158.
    Giele H. Coracoid Osteology, morphology and vascularity with respect to its utility as a free vascularized bone graft for scaphoid and other small bone reconstruction. Free paper session: Scaphoid. Santander: Fessh; 2016.Google Scholar
  159. 159.
    Obert L, Lepage D, Ferrier M, Tropet Y. Rib cartilage graft for posttraumatic or degenerative artritis at wrist level: 10-years results. J Wrist Surg. 2013;2:234–8.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yao J, Read B, Hentz VR. The fragmented proximal pole scaphoid nonunion treated with rib autograft: case series and review of the literature. J Hand Surg [Am]. 2013;38(11):2188–92.CrossRefGoogle Scholar
  161. 161.
    Lanzetta M. Scaphoid reconstruction by a free vascularized osteochondral graft from the rib: a case report. Microsurgery. 2009;29(5):420–4.PubMedCrossRefGoogle Scholar
  162. 162.
    Veitch S, Blake SM. Proximal scaphoid rib graft arthroplasty. J Bone Joint Surg Br. 2007;89(2):196–201.PubMedCrossRefGoogle Scholar
  163. 163.
    Le Bellec Y, Alnot JY. Traitement des pseudarthroses du scaphoïde carpien par greffe corticospongieuse non vascularisée: étude rétrospective de 47 case. Chir Main. 2008;27(4):154–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Malizos KN, Zachos V, Dailiana ZH, Zalavras C, Varitimidis S, Hantes M, et al. Scaphoid nonunions: management with vascularized bone grafts from the distal radius: a clinical and functional outcome study. Plast Reconstr Surg. 2007;119(5):1513–25.PubMedCrossRefGoogle Scholar
  165. 165.
    Munk B, Larsen CF. Bone grafting the scaphoid nonunion: a systematic review of 147 publications including 5,246 cases of scaphoid nonunion. Acta Orthop Scand. 2004;75(5):618–29.PubMedCrossRefGoogle Scholar
  166. 166.
    Jessu M, Wavreille G, Strouk G, et al. Pseudarthroses du sca- phoïde traitées par greffon vascularisé de Kuhlmann : résultats radiographiques et complications. Chir Main. 2008;27:87–96.PubMedCrossRefGoogle Scholar
  167. 167.
    Illarramendi AA, Schulz C, De Carli P. The surgical treatment of Kienbock’s desease by radius and ulna metaphiseal core decompression. JHS. 2001;26A:252–60.Google Scholar
  168. 168.
    Pinder RM, Brkljac M, Rix L, Muir L, Breuster M. Treatment of scaphoid nonunion: a systematic review of the existing evidence. JHS. 2015;40:1797–805.Google Scholar
  169. 169.
    Lee ST, Byun DJ, Roman-Deynes JL, Model Z, Wolfe SW. Hybrid Russe procedure for scaphoid waist fracture nonunion with deformity. JHS. 2015;40(11):2198–205.Google Scholar
  170. 170.
    Wolf SW. Do you always need a vascular graft? Non-vascularized graft that work. Round Table session: Scaphoid nonunion. Indications and result. Santander: Fessh; 2016.Google Scholar
  171. 171.
    Qu G, Von Schroeder HP. The osteogenic potential of pseudoarthrosis tissue and bone from scaphoid nonunions. JHS. 2008;33E(4):449–56.Google Scholar
  172. 172.
    De Carli P. Kienbok’s disease: principles and results of Metaphyseal Core Decompression of the Radius. Santander: Fessh; 2016.Google Scholar
  173. 173.
    Nelson FR, Brighton CT, Ryaby J, Simon BJ, Nielson JH, Lorich DG, Bolander M, Seelig J. Use of physical forces in bone healing. J Am Acad Orthop Surg. 2003;11(5):344–54.PubMedCrossRefGoogle Scholar
  174. 174.
    Aaron RK, Ciombor DM, Simon BJ. Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:21–9.CrossRefGoogle Scholar
  175. 175.
    Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005;10(4):579–93.PubMedCrossRefGoogle Scholar
  176. 176.
    Cadossi R, Caruso G, Setti S, Massari L. Fattori fisici di stimolazione ossea. GIOT. 2007;33(1):S255–61.Google Scholar
  177. 177.
    Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am. 2001;83-A(10):1514–23.PubMedCrossRefGoogle Scholar
  178. 178.
    Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:30–7.CrossRefGoogle Scholar
  179. 179.
    Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT. Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun. 1997;237(2):225–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Aaron RK, Ciombor DM. Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res. 1996;14(4):582–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Hartig M, Joos U, Wiesmann HP. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J. 2000;29(7):499–506.PubMedCrossRefGoogle Scholar
  182. 182.
    Wang Z, Clark CC, Brighton CT. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg. 2006;88(5):1053–65.PubMedCrossRefGoogle Scholar
  183. 183.
    Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MG, Farina A, Maliardi V, Magenes G. Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 2006;12(7):1985–99.PubMedCrossRefGoogle Scholar
  184. 184.
    Ryaby JT, Mathew J, Duarte-Alves P. Low intensity pulsed ultrasound affects adenylate cyclase activity and TGF-β synthesis in osteoblastic cells. Trans Orthop Res Soc. 1992;7:59.Google Scholar
  185. 185.
    Bassett CA, Valdez MG, Hernandez E. Modification of fracture repair with selected pulsing electromagnetic fields. J Bone Joint Surg Am. 1982;64(6):888–95.PubMedCrossRefGoogle Scholar
  186. 186.
    Brighton CT, Hozcack WJ, Brager MD, Windsor RE, Pollack SR, Vreslovic EJ, Kotwick JE. Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J Orthop Res. 1985;3(3):331–40.PubMedCrossRefGoogle Scholar
  187. 187.
    Pienkowski D, Pollack SR, Brighton CT, Griffith NJ. Comparison of asymmetrical and symmetrical pulse waveforms in electromagnetic stimulation. J Orhtop Res. 1992;10(2):247–9.CrossRefGoogle Scholar
  188. 188.
    Bassett CA, Pawluk RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 1974;184(4136):575–7.PubMedCrossRefGoogle Scholar
  189. 189.
    Canè V, Botti P, Farneti D, Soana S. Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res. 1991;9(6):908–17.PubMedCrossRefGoogle Scholar
  190. 190.
    Brighton CT, Luessenhop CP, Pollack SR, Steinberg DR, Petrik ME, Kaplan FS. Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae. J Bone Joint Surg Am. 1989;71(2):228–36.PubMedCrossRefGoogle Scholar
  191. 191.
    Wang SJ, Lewallen DG, Bolander ME, Chao EY, Ilstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res. 1994;12:40–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Brighton CT, Pollack SR. Treatment of recalcitrant non-union with a capacitively coupled electrical field. A preliminary report. J Bone Joint Surg Am. 1985;67(4):577–85.PubMedCrossRefGoogle Scholar
  193. 193.
    Brighton CT, Shaman P, Heppenstall RB, Esterhai JL Jr, Pollack SR, Friedenberg ZB. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop Relat Res. 1995;(321):223–34.Google Scholar
  194. 194.
    Borsalino G, Bagnacani M, Bettati E, Fornaciari F, Rocchi R, Uluhogian S, Ceccherelli G, Cadossi R, Traina GC. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res. 1988;237:256–63.Google Scholar
  195. 195.
    Mammi GI, Rocchi R, Cadossi R, Massari L, Traina GC. The electrical stimulation of tibial osteotomies. Double-blind study. Clin Orthop Relat Res. 1993;288:246–53.Google Scholar
  196. 196.
    Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.Google Scholar
  197. 197.
    Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA. A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine. 1999;24(13):1349–56.PubMedCrossRefGoogle Scholar
  198. 198.
    Impagliazzo A, Mattei A, Spurio Pompili GF, Setti S, Cadossi R. Treatment of ununited fractures with capacitively coupled electric field. J Orthop Traumatol. 2006;7:16–22.CrossRefGoogle Scholar
  199. 199.
    Massari L, Brayda Bruno M, Boriani S, Caruso G, Grava G, Barbanti Brodano G, Cadossi R, Setti S. Effetto della stimolazione biofisica con sistemi capacitivi nel trattamento delle artrodesi vertebrali: studio multicentrico, prospettico, randomizzato e in doppio cieco. XXXI Congresso Nazionale di Chirurgia Vertebrale G.I.S, Milan, 22–24 May 2008.Google Scholar
  200. 200.
    Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol. 2009;35(4):529–36.PubMedCrossRefGoogle Scholar
  201. 201.
    Faldini C, Cadossi M, Luciani D, Betti E, Chiarello E, Giannini S. Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: prospective randomized double-blind study. Curr Orthop Pract. 2010;21(3):282–7.CrossRefGoogle Scholar
  202. 202.
    Rossini M, Viapiana O, Gatti D, de Terlizzi F, Adami S. Capacitively coupled electric field for pain relief in patients with vertebral fractures and chronic pain. Clin Orthop Relat Res. 2010;468(3):735–40.PubMedCrossRefGoogle Scholar
  203. 203.
    Piazzolla A, Solarino G, Bizzoca D, Garofalo N, Dicuonzo F, Setti S, Moretti B. Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents. 2015;29(3):637–46.PubMedGoogle Scholar
  204. 204.
    Hinsenkamp M, Bourgois R, Bassett CA, Chiabrera A, Burny F, Ryaby J. Electromagnetic stimulation of fracture repair. Influence on healing of fresh fracture. Acta Orthop Belg. 1978;44(5):671–98.PubMedGoogle Scholar
  205. 205.
    Verardi V, Bottai M, Mazzeo M, Eminente A. I CEMP nella stimolazione dei tessuti molli. In: Traina GC, Romanini L, Massari L, Villani C, Cadossi R, editors. Impiego dei campi elettromagnetici pulsati in ortopedia e traumatologia, Vol. I. Rome; 1995. pp. 205–10.Google Scholar
  206. 206.
    Chiabrera A, Cadossi R, Bersani F, Franceschi C, Bianco B. Electric and magnetic field effects on the immune system. In: Carpenter DO, Ayrapetyan S, editors. Biological effects of electric and magnetic fields, vol. II. London: Academic; 1994. p. 121–45.CrossRefGoogle Scholar
  207. 207.
    Bora FW, Osterman AL, Brighton CT. The elettrica treatment of scaphoid nonunion. Clin Orthop. 1981;161:30–8.Google Scholar
  208. 208.
    Bora FW, Osterman AL, Woodbury DF, Brighton CT. Treatment of nonunion of the scaphoid by directory current. Orthop Clin North Am. 1984;15:107–12.PubMedGoogle Scholar
  209. 209.
    Brighton CT. The semiinvasive method of treating nonunion with directory current. Orthop Clin North Am. 1984;15:33–45.PubMedGoogle Scholar
  210. 210.
    Patterson D. Treatment of nonunion with a constant direct current: a totali implantable system. Orthop Clin North Am. 1984;15:47–59.Google Scholar
  211. 211.
    Borelli PP, Imberti S. Sistemi capacitivi di ultima generazione nelle patologie del polso e della mano. Nuova metodica di applicazione con tutore staticomodulare. Rivista Chirurgia della Mano. 2006;43(2):209–15.Google Scholar
  212. 212.
    Beckenbaugh RO. Noninvasive pulsed electromagnetic stimulation in the treatment of scaphoid nonunion. Orthop Trans. 1985;9:44.Google Scholar
  213. 213.
    Frykman GK, Taleisnik J, et al. Treatment of noni iter scaphoid fractures by PEMF and cast. J Hand Surg. 1986;11A:344–9.CrossRefGoogle Scholar
  214. 214.
    Adams BD, Frykman GK, Taleisnik J. Treatment of scaphoid nonunion with casting and pulsed electromagnetic fields: a studi continuation. J Hand Surg. 1992;17A:910–4.CrossRefGoogle Scholar
  215. 215.
    Pao SV, Chang J. Scaphoid nonunion: diagnosis and treatment. Plast Reconstr Surg. 2003;112:1666–77.PubMedCrossRefGoogle Scholar
  216. 216.
    Schmitt R, Christopoulos G, Wagner M, Krimmer H, Fodor S, van Schoonhoven J, Prommersberger KJ. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: is intravenous contrast agent necessary in MRI? Eur J Radiol. 2011;77(2):222–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Megerle K, Worg H, Christopoulos G, Schmitt R, Krimmer H. Gadolinium-enhanced preoperative MRI scans as a prognostic parameter in scaphoid nonunion. J Hand Surg Eur Vol. 2011;36(1):23–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pier Paolo Borelli
    • 1
  1. 1.Divisione di Ortopedia e TraumatologiaAzienda Spedali Civili di BresciaBresciaItaly

Personalised recommendations