Skip to main content

Interpretability of Fuzzy Systems Designed in the Process of Gradient Learning

  • Chapter
  • First Online:
Design of Interpretable Fuzzy Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 684))

  • 584 Accesses

Abstract

Supervised learning of fuzzy systems can be used to select their structure and parameters. There are few approaches to supervised learning and one of them is gradient learning (Sect. 2.2) . Impact on interpretability of fuzzy systems designed by gradient learning is a complex issue. It involves operations related to initialization, choice of a learning algorithm, realization of a learning process and also the final tuning of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. Chapman and Hall/CRC, Boca Raton (2013)

    MATH  Google Scholar 

  2. Albalate, A., Suendermann, D.: A combination approach to cluster validation based on statistical quantiles. In: Proceedings of the 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing (IJCBS’09), pp. 549–555 (2009)

    Google Scholar 

  3. Arabas, J., Kozdrowski, S.: Population initialization in the context of a biased, problem-specific mutation. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on Evolutionary Computation, pp. 769–774 (1998)

    Google Scholar 

  4. Baccour, L., Alimi, A.M., John, R.I.: Some notes on fuzzy similarity measures and application to classification of shapes, recognition of arabic sentences and mosaic. Int. J. Comput. Sci. 41, 81–90 (2014)

    Google Scholar 

  5. Beg, I., Ashraf, S.: Similarity measures for fuzzy sets. Appl. Comput. Math. 8, 192–202 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  7. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Springer, Heidelberg (2003)

    Google Scholar 

  8. Chua, T., Tan, W.: A new fuzzy rule-based initialization method for K-Nearest neighbor classifier. In: Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’09), pp. 415–420 (2009)

    Google Scholar 

  9. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Trans. Neural Network. 20, 701–714 (2009)

    Article  Google Scholar 

  10. Cpałka, K., Rutkowski, L.: Flexible neuro-fuzzy structures for pattern classification. WSEAS Trans. Comput. 4, 679–688 (2005)

    Google Scholar 

  11. Cpałka, K., Rutkowski, L.: Flexible Takagi–Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4, 1450–1458 (2005)

    Google Scholar 

  12. Das, A.K., Sil, J.: Cluster validation using splitting and merging technique. In: Proceedings of the 2007. International Conference on Computational Intelligence and Multimedia Applications, pp. 56–60 (2007)

    Google Scholar 

  13. Dasgupta, D., Hernandez, G., Romero, A., Garrett, D., Kaushal, A., Simien, J.: On the use of informed initialization and extreme solutions sub-population in multi-objective evolutionary algorithms. In: Proceedings of the IEEE Symposium on Computational Intelligence in Multi-criteria Decision-making, pp. 58–65 (2009)

    Google Scholar 

  14. Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L.: A logical approach to interpolation based on similarity relations. Int. J. Approx. Reason. 17, 1–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. Wiley, Chichester (2011)

    Book  MATH  Google Scholar 

  16. Gao, W.F., Liu, S.Y., Huang, L.L.: Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 17, 4316–4327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, L., Oppacher, F.: Symmetric comparator pairs in the initialization of genetic algorithm populations for sorting networks. In: Proceedings of the 2006 IEEE International Conference0010890 on Evolutionary Computation, pp. 2845–2850 (2006)

    Google Scholar 

  18. Guillaume, S.: Designing fuzzy inference systems from data: an interpretability oriented review. IEEE Trans. Fuzzy Syst. 9, 426–443 (2001)

    Article  Google Scholar 

  19. Guillaume, S., Charnomordic, B.: Generating an interpretable family of fuzzy partitions from data. IEEE Trans. Fuzzy Syst. 12, 324–335 (2004)

    Article  Google Scholar 

  20. Gupta, K.R.: Effect of varying the size of initial parent pool in genetic algorithm. In: Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 785–788 (2014)

    Google Scholar 

  21. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  22. Heaton, J.: Artificial Intelligence for Humans. Nature-Inspired Algorithms, vol. 2. CreateSpace Independent Publishing Platform, Dover (2014)

    Google Scholar 

  23. Icke, I., Rosenberg, A.: Multi-objective Genetic Programming for Visual Analytics. Lecture Notes in Computer Science, pp. 322–334. Springer, Heidelberg (2011)

    Google Scholar 

  24. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B 29, 601–618 (1999)

    Article  Google Scholar 

  25. Jin, Y.: Fuzzy modeling of high dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8, 212–221 (2000)

    Article  Google Scholar 

  26. Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for evolutionary algorithms. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2585–2592 (2014)

    Google Scholar 

  27. Kazimipour, B., Li, X., Qin, A.K.: Effects of population initialization on differential evolution for large scale optimization. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2404–2411 (2014)

    Google Scholar 

  28. Kenesei, T., Abonyi, J.: Interpretable support vector machines in regression and classification - application in process engineering. Hung. J. Ind. Chem. 35, 101–108 (2007)

    Google Scholar 

  29. Khan, S.S., Ahmad, A.: Cluster center initialization algorithm for K-modes clustering. Expert Syst. Appl. 40, 7444–7456 (2013)

    Article  Google Scholar 

  30. Krishnamoorthy, R., Kumar, S.S.: A new inter cluster validation method for unsupervised clustering techniques. In: Proceedings of the 2013 International Conference on Communication and Computer Vision (ICCCV), pp. 1–5 (2013)

    Google Scholar 

  31. Krishnamoorthy, R., Kumar, S.S.: Optimized cluster validation technique for unsupervised clustering techniques. In: Proceedings of the 2014 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–6 (2014)

    Google Scholar 

  32. Lee-Kwang, H., Song, T.S., Lee, K.M.: Similarity measure between fuzzy sets and between elements. Fuzzy Sets Syst. 62, 291–293 (1994)

    Article  MathSciNet  Google Scholar 

  33. Lichman, M.: UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science (2013). http://archive.ics.uci.edu/ml

  34. Liu, F., Quek, C., Ng, G.S.: A novel generic hebbian ordering based fuzzy rule base reduction approach to Mamdani neuro fuzzy system. Neural Comput. 19, 1656–1680 (2007)

    Article  MATH  Google Scholar 

  35. Mishra, S., Saha, S., Mondal, S.: Cluster validation techniques for Bibliographic databases. In: Proceedings of the 2014 IEEE Students’ Technology Symposium (TechSym), pp. 93–98 (2014)

    Google Scholar 

  36. Mishra, S., Saha, S., Mondal, S.: On validation of clustering techniques for bibliographic databases. In: Proceedings of the 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 3150–3155 (2014)

    Google Scholar 

  37. Modiri-Delshad, M., Rahim, N.A.: Fast initialization of population based methods for solving economic dispatch problems. In: Proceedings of the 3rd IET International Conference on Clean Energy and Technology (CEAT), pp. 1–5 (2014)

    Google Scholar 

  38. Nauck, D., Kruse, R.: Designing neuro-fuzzy systems through back-propagation. In: Pedrycz, W. (ed.) Fuzzy Modeling: Paradigms and Practice, pp. 203–228. Kluwer Academic Publishers, Norwell (1996)

    Chapter  Google Scholar 

  39. Orito, Y., Hanada, Y., Shibata, S., Yamamoto, H.: A new population initialization approach based on bordered hessian for portfolio optimization problems. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1341–1346 (2013)

    Google Scholar 

  40. Paul, P.V., Dhavachelvan, P., Baskaran, R.: A novel population initialization technique for genetic algorithm, circuits. In: Proceedings of the 2013 International Conference on Power and Computing Technologies (ICCPCT), pp. 1235–1238 (2013)

    Google Scholar 

  41. Poikolainen, I., Neri, F., Caraffini, F.: Cluster-based population initialization for differential evolution frameworks. Inf. Sci. 297, 216–235 (2015)

    Article  Google Scholar 

  42. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Comput. Math. Appl. 53, 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Riid, A., Rustern, E.: Interpretability improvement of fuzzy systems: reducing the number of unique singletons in zeroth order Takagi–Sugeno systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–6 (2010)

    Google Scholar 

  44. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Syst. 9, 516–524 (2001)

    Article  Google Scholar 

  45. Rutkowski, L.: Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  46. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  47. Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 140–151 (2005)

    Article  Google Scholar 

  48. Sekaj, I., Perkacz, J.: Some aspects of parallel genetic algorithms with population re-initialization. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, pp. 1333–1338 (2007)

    Google Scholar 

  49. Shukla, P.K., Tripathi, S.P.: Handling high dimensionality and interpretability-accuracy trade-off issues in evolutionary multiobjective fuzzy classifiers. Int. J. Sci. Eng. Res. 5, 665–671 (2014)

    Google Scholar 

  50. Stetco, A., Zeng, X.J., Keane, J.: Fuzzy C-means++: fuzzy C-means with effective seeding initialization. Expert Syst. Appl. 42, 7541–7548 (2015)

    Article  Google Scholar 

  51. Tadeusiewicz, R.: Neural networks (in Polish). Exit (1993)

    Google Scholar 

  52. Wang, H., Wu, Z., Wang, J., Dong, X., Yu, S., Chen, C.: A new population initialization method based on space transformation search. In: Proceedings of the 2009 Fifth International Conference on Natural Computation, pp. 332–336 (2009)

    Google Scholar 

  53. Werbos, P.: Beyond regression: New tools for prediction and analysis in the behavioral sciences (Ph.D. thesis). Harvard University (1974)

    Google Scholar 

  54. Werbos, P.: Applications of advances in nonlinear sensitivity analysis. In: System Modeling and Optimization. Springer (1982)

    Google Scholar 

  55. Xu, R., Wunsc, D.: Clustering. Wiley-IEEE Press, New York (2008)

    Book  Google Scholar 

  56. Yong, Z., Li-min, J., Wei-l, H.: Construct interpretable fuzzy classification system based on fuzzy clustering initialization. Int. J. Inf. Technol. 11, 91–107 (2005)

    Google Scholar 

  57. Zhang, Y., Yang, R., Zuo, J., Jing, X.: Enhancing MOEA/D with uniform population initialization, weight vector design and adjustment using uniform design. J. Syst. Eng. Electron. 26, 1010–1022 (2015)

    Article  Google Scholar 

  58. Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: a comparative analysis. Int. J. Approx. Reason. 1, 221–242 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Cpałka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cpałka, K. (2017). Interpretability of Fuzzy Systems Designed in the Process of Gradient Learning. In: Design of Interpretable Fuzzy Systems. Studies in Computational Intelligence, vol 684. Springer, Cham. https://doi.org/10.1007/978-3-319-52881-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52881-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52880-9

  • Online ISBN: 978-3-319-52881-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics