Skip to main content

Introduction to Fuzzy System Interpretability

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 684))

Abstract

In general terms interpretability is a feature of a certain phenomenon, which facilitates its interpretation. This notion as such is imprecise because there are no commonly known solutions making it possible to unambiguously determine whether, for example, a fuzzy system is (and in particular its rules are) interpretable. The word “interpretability” could actually be substituted with a synonymous word of “readability”. Of course, verification of interpretability also heavily depends on the initial knowledge and the basic cognitive structures, which are imagination and intelligence. This additionally complicates considerations from the field of interpretability making it still an open issue. Despite this fact, interpretability is important because it increases reliability and simplifies operation, allows us to refer the operation to the current state of knowledge, allows us to eliminate errors and inconsistencies in the operation, allows us to adapt to changing working conditions, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.: A multi-objective evolutionary approach to concurrently learn rule and data base soft linguistic fuzzy rule-based systems. IEEE Trans. Fuzzy Syst. 17, 1106–1122 (2009)

    Article  Google Scholar 

  2. Alonso, J.M.: Modeling Highly Interpretable Fuzzy Systems. Eur. Centre Soft Comput. (2010)

    Google Scholar 

  3. Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Comput. 15, 1959–1980 (2011)

    Article  Google Scholar 

  4. Alonso, J.M., Magdalena, L., Cordón, O.: Embedding HILK in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. In: Proceedings of the 4th International Workshop on Genetic and Evolving Fuzzy Systems (GEFS2010), pp. 15–20 (2010)

    Google Scholar 

  5. Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput. 13, 437–449 (2009)

    Article  Google Scholar 

  6. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Springer, New York (2003)

    Google Scholar 

  7. Chadli, M., Borne, P.: Multiple Models Approach in Automation: Takagi-Sugeno Fuzzy Systems. Wiley, New Jersey (2012)

    Google Scholar 

  8. Chen, K., Bouscayrol, A., Berthon, A., Delarue, P., Hissel, D., Trigui, R.: Global modeling of different vehicles. IEEE Veh. Technol. Mag. 4, 80–89 (2009)

    Article  Google Scholar 

  9. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Trans. Neural Netw. 20, 701–714 (2009)

    Article  Google Scholar 

  10. Espinosa, J., Vandewalle, J.: Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm. IEEE Trans. Fuzzy Syst. 8, 591–600 (2000)

    Article  Google Scholar 

  11. Farahbod, F., Eftekhari, M.: Comparsion of different T-norm operators in classification problems. Int. J. Fuzzy Logic Syst. 2, 33–41 (2012)

    Article  Google Scholar 

  12. Fazendeiro, P., De Oliveira, J.V., Pedrycz, W.: A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller. IEEE Trans. Biomed. Eng. 54, 1667–1678 (2007)

    Article  Google Scholar 

  13. Gacto, M.J., Alcalá, R., Herrera, F.: Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans. Fuzzy Syst. 18, 515–531 (2010)

    Article  Google Scholar 

  14. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181, 4340–4360 (2011)

    Article  Google Scholar 

  15. Gorzałczany, M., Rudziński, F.: A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with balanced accuracy and interpretability. Appl. Soft Comput. 40, 206–220 (2016)

    Article  Google Scholar 

  16. Gorzałczany, M.B., Rudziński, F.: Accuracy versus interpretability of fuzzy rule-based classifiers: an evolutionary approach. In: Proceedings of the International Conference on Swarm and Evolutionary Computation (SIDE’12), pp. 222–230 (2012)

    Google Scholar 

  17. Guillaume, S.: Designing fuzzy inference systems from data: an interpretability oriented review. IEEE Trans. Fuzzy Syst. 9, 426–443 (2001)

    Article  Google Scholar 

  18. Guillaume, S., Charnomordic, B.: Generating an interpretable family of fuzzy partitions from data. IEEE Trans. Fuzzy Syst. 12, 324–335 (2004)

    Article  Google Scholar 

  19. Ibrahim, S.S., Bamatraf, M.,A.: Interpretation trained neural networks based on genetic algorithms. Int. J. Artif. Intell. Appl. (IJAIA) 4, 13–22 (2013)

    Google Scholar 

  20. Icke, I., Rosenberg, A.: Multi-objective Genetic Programming for Visual Analytics. Lecture Notes in Computer Science, vol. 6621, pp. 322–334. Springer, Heidelberg (2011)

    Google Scholar 

  21. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B 29, 601–618 (1999)

    Article  Google Scholar 

  22. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approx. Reason. 44, 4–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, Y.: Fuzzy modeling of high dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8, 212–221 (2000)

    Article  Google Scholar 

  24. Kaczorek, T.: A modified state variable diagram method for determination of positive realizations of linear continous-time systems with delays. Int. J. Appl. Math. Comput. Sci. 22, 897–905 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Kenesei, T., Abonyi, J.: Interpretable support vector machines in regression and classification - application in process engineering. Hung. J. Ind. Chem. 35, 101–108 (2007)

    Google Scholar 

  26. Liu, F., Quek, C., Ng, G.S.: A novel generic hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system. Neural Comput. 19, 1656–1680 (2007)

    Article  MATH  Google Scholar 

  27. Marquez, A.A., Marquez, F.A., Peregrin, A.: A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ2010), pp. 1-7 (2010)

    Google Scholar 

  28. Mencar, C., Castellano, G., Fanelli, A.M.: On the role of interpretability in fuzzy data mining. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15, 521–537 (2007)

    Google Scholar 

  29. Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy knowledge bases: a cointension based approach. Int. J. Appro. Reason. 52, 501–518 (2011)

    Article  MathSciNet  Google Scholar 

  30. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  31. Musa, A.A.H., Muawia, M.A.: Analysis of the dc motor speed control using state variable transition matrix. Int. J. Sci. Res. (IJSR) 3, 2758–2763 (2014)

    Google Scholar 

  32. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Int. J. Appl. Math. Comput. Sci. 22, 225–237 (2012)

    MATH  Google Scholar 

  33. Pulkkinen, P., Koivisto, H.: A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans. Fuzzy Syst. 18, 161–177 (2010)

    Article  Google Scholar 

  34. Riid, A., Rustern, E.: Interpretability improvement of fuzzy systems: reducing the number of unique singletons in zeroth order Takagi-Sugeno systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–6 (2010)

    Google Scholar 

  35. Riid, A., Rustern, E.: Interpretability, Interpolation and Rule Weights in Linguistic Fuzzy Modeling. Lecture Notes in Computer Science, vol. 6857, pp. 91–98. Springer, Heidelberg (2011)

    Google Scholar 

  36. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Syst. 9, 516–524 (2001)

    Article  Google Scholar 

  37. Rudziński, F.: A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. Appl. Soft Comput. 38, 118–133 (2016)

    Article  Google Scholar 

  38. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  39. Rutkowski, L., Cpałka, K.: Flexible neuro fuzzy systems. IEEE Trans. Neural Netw. 14, 554–574 (2003)

    Article  Google Scholar 

  40. Sánchez, G., Jiménez, F., Sánchez, J.M., Alcaraz, J.M.: A Multi-objective Neuro-evolutionary Algorithm to Obtain Interpretable Fuzzy Models. Lecture Notes in Computer Science, vol. 5988, pp. 51–60. Springer, Heidelberg (2010)

    Google Scholar 

  41. Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. Lecture Notes in Computer Science, vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

    Google Scholar 

  42. Shukla, P.K., Tripathi, S.P.: A review on the interpretability-accuracy trade-off in evolutionary multi-objective fuzzy systems (EMOFS). Information 3, 256–277 (2012)

    Article  Google Scholar 

  43. Shukla, P.K., Tripathi, S.P.: Handling high dimensionality and interpretability-accuracy trade-off issues in evolutionary multiobjective fuzzy classifiers. Int. J. Sci. Eng. Res. 5, 665–671 (2014)

    Google Scholar 

  44. Shukla, P.K., Tripathi, S.P.: A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. J. Uncertain. Anal. Appl. 2, 1–15 (2014)

    Article  Google Scholar 

  45. Simiński, K.: Rule weights in a neuro-fuzzy system with a hierarchical domain partition. Appl. Math. Comput. Sci. 20, 337–347 (2010)

    MATH  Google Scholar 

  46. Singh, L., Kumar, S., Paul, S.: Automatic simultaneous architecture and parameter search in fuzzy neural network learning using novel variable length crossover differential evolution. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1795–1802 (2008)

    Google Scholar 

  47. Tadeusiewicz, R.: Place and role of intelligent systems in computer science. Comput. Method. Mater. Sci. 10, 193–206 (2010)

    Google Scholar 

  48. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Google Scholar 

  49. Tikk, D., Gedeon, T., Wong, K.: A feature ranking algorithm for fuzzy modeling problems. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 176–192. Springer-Verlag, Heidelberg (2003)

    Chapter  Google Scholar 

  50. Vanhoucke, V., Silipo, R.: Interpretability in multidimensional classification. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 193–217. Springer-Verlag, Heidelberg (2003)

    Chapter  Google Scholar 

  51. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets Syst. 149, 149–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zadeh, L.A.: Fuzzy sets Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Cpałka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cpałka, K. (2017). Introduction to Fuzzy System Interpretability. In: Design of Interpretable Fuzzy Systems. Studies in Computational Intelligence, vol 684. Springer, Cham. https://doi.org/10.1007/978-3-319-52881-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52881-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52880-9

  • Online ISBN: 978-3-319-52881-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics