Skip to main content

How to Describe the Skin’s Electrical Nonlinear Response

  • Conference paper
  • First Online:
  • 1462 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 59))

Abstract

The skin’s electrical nonlinearities found experimentally arerelated to stratum corneum and modeled by the parallel resistance (Rp) as a linear current dependence in conductance (1/Rp). We show that such dependence could occur because the skin’s current-voltage characteristic has a non-ohmic linear portion at large voltage, due to pores’ conduction, that can be detected as a constant dynamic resistance (dU/dI).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimnes S, Martinsen Ø G, (2015) Bioimpedance and bioelectricity basics. 3rd ed., Academic Press. London

    Google Scholar 

  2. Lykken DT (1970) Square-wave analysis of skin impedance. Psychophysiology 7(2):262-275.

    Google Scholar 

  3. van Boxtel A. (1977) Skin resistance during square-wave electrical pulses of 1 to 10 mA. Med. Biol. Eng. Comput. 15(6) 679-657.

    Google Scholar 

  4. Yamamoto Y, Isshiki H, Nakamura T. (1996). Instantaneous measurement of electrical parameters in a palm during electrodermal activity. IEEE Trans. Instrum. Meas. 45(2), 483-487.

    Google Scholar 

  5. Bîrlea S I, Breen P P, Corley G J, Bîrlea N M, Quondamatteo F, ÓLaighin G. (2014). Changes in the electrical properties of the electrode–skin–underlying tissue composite during a week-long programme of neuromuscular electrical stimulation. Physiol. Meas. 35(2), 231.

    Google Scholar 

  6. Luna JLV, Krenn M, Ramírez JAC, Mayr W (2015) Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation. PLoS One. 10(5), e0125609. doi: 10.1371/journal.pone.0125609.

    Google Scholar 

  7. Yamamoto T, Yamamoto Y. (1981) Non-linear electrical properties of skin in the low frequency range, Med. Biol. Eng. Comput. 19(3) 302-310.

    Google Scholar 

  8. Chizmadzhev Y A, Zarnitsin V G, Weaver J C, Potts R O. (1995). Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophys. J. 68(3), 749-765.

    Google Scholar 

  9. Stephens W G S (1963) The current-voltage relationship in human skin. Med. Electron. Biol. Eng. 1(3), 389-399.

    Google Scholar 

  10. Kaczmarek K A, Webster J G. (1989). Voltage-current characteristics of the electrotactile skin-electrode interface. In Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc (Vol. 11, pp. 1526-1527). Seattle, WA: IEEE.

    Google Scholar 

  11. Kasting G B, Bowman L A. (1990). DC electrical properties of frozen, excised human skin. Pharm. Res. 7(2), 134-143.

    Google Scholar 

  12. Kasting G B, Bowman L A. (1990). Electrical analysis of fresh, excised human skin: a comparison with frozen skin. Pharm. Res. 7(11), 1141-1146.

    Google Scholar 

  13. Gratieri T, Kalia YN (2013) Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv. Drug Delivery Rev., 65(2), 315-329.

    Google Scholar 

  14. Craane-van Hinsberg W H M, Verhoef J C, Junginger H E, Bodde H E. (1997). Electroperturbation of the human skin barrier in vitro (I): the influence of current density on the thermal behaviour of skin impedance. Eur. J. Pharm. Biopharm. 43(1), 43-50.

    Google Scholar 

  15. Craane-van Hinsberg W H M, et al. (1997) Electroperturbation of the human skin barrier in vitro: II. Effects on stratum corneum lipid ordering and ultrastructure. Microsc. Res. Tech. 37(3) 200-213.

    Google Scholar 

  16. Dorgan S J, Reilly R B. (1999). A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 7(3), 341-348.

    Google Scholar 

  17. Birlea M, Birlea S I (2012) The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model. Journal of Electrical Bioimpedance, 3(1), 36-41.

    Google Scholar 

  18. DeBruin KA, Krassowska W. (1999) Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophys. J. 77(3):1225-33. doi: 10.1016/S0006-3495(99)76974-2

    Google Scholar 

  19. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta, Biomembr. 940(2):275-87.

    Google Scholar 

  20. Pliquett U, Langer R, Weaver J C (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim. Biophys. Acta, Biomembr. 1239(2), 111-121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bîrlea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bîrlea, N.M., Bîrlea, S.I., Culea, E. (2017). How to Describe the Skin’s Electrical Nonlinear Response. In: Vlad, S., Roman, N. (eds) International Conference on Advancements of Medicine and Health Care through Technology; 12th - 15th October 2016, Cluj-Napoca, Romania. IFMBE Proceedings, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-52875-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52875-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52874-8

  • Online ISBN: 978-3-319-52875-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics