Skip to main content

WKB Analysis and Stokes Geometry of Differential Equations

  • Conference paper
  • First Online:
Book cover Analytic, Algebraic and Geometric Aspects of Differential Equations

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this article we survey the fundamental theory of the exact WKB analysis, that is, the WKB analysis based on the Borel resummation method. Starting with the exact WKB analysis for second order linear ordinary differential equations, we explain its application to the computation of monodromy groups of Fuchsian equations and its generalization to higher order equations. Some recent developments of the theory such as the exact WKB analysis for completely integrable systems are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aoki, T. Kawai, Y. Takei, The Bender-Wu analysis and the Voros theory, in Special Functions, eds. M. Kashiwara and T. Miwa (Springer, Berlin, 1991), pp. 1–29

    Google Scholar 

  2. T. Aoki, T. Kawai, Y. Takei, New turning points in the exact WKB analysis for higher order ordinary differential equations, in Analyse algébrique des perturbations singulières. I, ed. L. Boutet de Monvel (Hermann, Paris, 1994), pp. 69–84

    Google Scholar 

  3. T. Aoki, T. Kawai, T. Koike, Y. Takei, On the exact WKB analysis of operators admitting infinitely many phases. Adv. Math. 181, 165–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Aoki, T. Kawai, T. Koike, Y. Takei, On the exact WKB analysis of microdifferential operators of WKB type. Ann. Inst. Fourier (Grenoble) 54, 1393–1421 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Aoki, T. Kawai, S. Sasaki, A. Shudo, Y. Takei, Virtual turning points and bifurcation of Stokes curves. J. Phys. A 38, 3317–3336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Aoki, T. Kawai, Y. Takei, The Bender-Wu analysis and the Voros theory. II, in Adv. Stud. Pure Math., Vol. 54, eds. T. Miwa, A. Matsuo, T. Nakashima and Y. Saito) (The Mathemetical Society of Japan, Tokyo, 2009), pp. 19–94

    Google Scholar 

  7. W. Balser, From Divergent Power Series to Analytic Functions, Vol. 1582, Lecture Notes in Mathematics (Springer, Berlin, 1994)

    Google Scholar 

  8. H.L. Berk, W.M. Nevins, K.V. Roberts, New Stokes’ line in WKB theory. J. Math. Phys. 23, 988–1002 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Candelpergher, J.C. Nosmas, F. Pham, Approche de la résurgence (Hermann, Paris, 1993)

    MATH  Google Scholar 

  10. O. Costin, Asymptotics and Borel Summability, Monographs and Surveys in Pure and Applied Mathematics, vol. 141 (CRC Press, Boca Raton, 2009)

    Google Scholar 

  11. E. Delabaere, H. Dillinger, F. Pham, Résurgence de Voros et périodes des courbes hyperelliptiques. Ann. Inst. Fourier (Grenoble) 43, 163–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Delabaere, H. Dillinger, F. Pham, Exact semi-classical expansions for one dimensional quantum oscillators. J. Math. Phys. 38, 6126–6184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics. Ann. Inst. H. Poincaré 71, 1–94 (1999)

    MathSciNet  MATH  Google Scholar 

  14. J. Ecalle, Les fonctions résurgentes. Tome I, II, III. Publ. Math. d’Orsay, Univ. Paris-Sud, 1981 (Tome I, II), 1985 (Tome III)

    Google Scholar 

  15. J. Ecalle, Cinq applications des fonctions résurgentes. Publ. Math. d’Orsay, 84T62, Univ. Paris-Sud, 1984

    Google Scholar 

  16. J. Ecalle, Weighted products and parametric resurgence, in Analyse algébrique des perturbations singulières. I, ed. by L. Boutet de Monvel (Hermann, Paris, 1994), pp. 7–49

    Google Scholar 

  17. A. Erdélyi et al., Higher Transcendental Functions (Reprint Edition), vol. I (McGraw-Hill, New York, 1981)

    Google Scholar 

  18. D. Gaiotto, G.W. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Gaiotto, G.W. Moore, A. Neitzke, Spectral networks. Ann. Henri Poincaré 14, 1643–1731 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Gaiotto, G.W. Moore, A. Neitzke, Spectral networks and snakes. Ann. Henri Poincaré 15, 61–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Hirose, On the stokes geometry for the Pearcey system and the (1, 4) hypergeometric system, RIMS Kôkyûroku Bessatsu, vol. B40, pp. 243–292 (2013)

    MathSciNet  MATH  Google Scholar 

  22. S. Hirose, On a WKB theoretic transformation for a completely integrable system near a degenerate point where two turning points coalesce. Publ. RIMS 50, 19–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Honda, On the stokes geometry of the Noumi-Yamada system, RIMS Kôkyûroku Bessatsu, vol. B2, pp. 45–72 (2007)

    MathSciNet  MATH  Google Scholar 

  24. N. Honda, The geometric structure of a virtual turning point and the model of the stokes geometry, RIMS Kôkyûroku Bessatsu, vol. B10, pp. 63–113 (2008)

    MathSciNet  MATH  Google Scholar 

  25. N. Honda, T. Kawai, Y. Takei, Virtual Turning Points. Springer Briefs in Mathematical Physics, vol. 4 (Springer, Berlin, 2015)

    Google Scholar 

  26. S. Kamimoto, T. Koike, On the Borel summability of WKB theoretic transformation series. Preprint (RIMS-1726) (2011), available at http://www.kurims.kyoto-u.ac.jp/preprint/preprint_y2011.html. RIMS Kôkyûroku Bessatsu (to appear)

  27. T. Kawai, Y. Takei, Algebraic Analysis of Singular Perturbation Theory. Translations of Mathematical Monographs, vol. 227 (American Mathematical Society, Providence, RI, 2005)

    Google Scholar 

  28. T. Koike, R. Schäfke, On the Borel summability of WKB solutions of Schrödinger equations with polynomial potentials and its applications. In preparation (The completion of the paper is delayed. A preliminary version can be obtained through the contact with Tatsuya Koike at Kobe University)

    Google Scholar 

  29. T. Koike, Y. Takei, Exact WKB analysis of second-order non-homogeneous linear ordinary differential equations, RIMS Kôkyûroku Bessatsu, vol. B40, pp. 293–312 (2013)

    MathSciNet  MATH  Google Scholar 

  30. F. Pham, Resurgence, quantized canonical transformations, and multi-instanton expansions, in Algebraic Analysis, ed. by M. Kashiwara, T. Kawai, vol. II (Academic Press, New York, 1988), pp. 699–726

    Google Scholar 

  31. M. Sato, T. Kawai, M. Kashiwara, Microfunctions and Pseudo-Differential Equations. Lecture Notes in Mathematics, vol. 287 (Springer, Berlin, 1973), pp. 265–529

    Google Scholar 

  32. D. Sauzin, Resurgent functions and splitting problems, RIMS Kôkyûroku, vol. 1493, pp. 48–117 (2006)

    Google Scholar 

  33. H.J. Silverstone, JWKB connection-formula problem revisited via Borel summation. Phys. Rev. Lett. 55, 2523–2526 (1985)

    Article  MathSciNet  Google Scholar 

  34. Y. Takei, Exact WKB analysis, and exact steepest descent method. Sugaku Expositions 20, 169–189 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Y. Takei, Sato’s conjecture for the Weber equation and transformation theory for Schrödinger equations with a merging pair of turning points, RIMS Kôkyûroku Bessatsu, vol. B10, pp. 205–224 (2008)

    MATH  Google Scholar 

  36. A. Voros, The return of the quartic oscillator. The complex WKB method. Ann. Inst. H. Poincaré 39, 211–338 (1983)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Shinji Sasaki for his kind help in preparing some figures contained in this article. This research is supported by JSPS KAKENHI Grant No. 26287015 and No. 24340026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitsugu Takei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Takei, Y. (2017). WKB Analysis and Stokes Geometry of Differential Equations. In: Filipuk, G., Haraoka, Y., Michalik, S. (eds) Analytic, Algebraic and Geometric Aspects of Differential Equations. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-52842-7_5

Download citation

Publish with us

Policies and ethics