Skip to main content

Physiology of Peritoneal Dialysis

  • Chapter
  • First Online:

Abstract

Now a respected and established method of treatment for end stage renal disease, peritoneal dialysis represents the continued evolution of the observations, experiments and scientific endeavors of generations of researchers and clinicians throughout the centuries. In this chapter we review the physiology of transport of solutes and fluid across the peritoneal membrane during peritoneal dialysis. A brief overview of safety and efficacy of the different peritoneal dialysis solution, tests to measure the adequacy of peritoneal dialysis and the different modalities of peritoneal dialysis are also discussed. It is necessary to continue research in the field of peritoneal dialysis physiology, since many issues still permeate our theoretical way of understanding the biological phenomena involved in peritoneal dialysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain AK, Blake P, Cordy P, Garg AX. Global trends in rates of peritoneal dialysis. J Am Soc Nephrol JASN. 2012;23(3):533–44.

    Article  PubMed  Google Scholar 

  2. Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. Clin J Am Soc Nephrol. 2011;6(2):447–56.

    Article  PubMed  Google Scholar 

  3. Palmer RA. As it was in the beginning: a history of peritoneal dialysis. Perit Dial Int. 1982;2(1):16–22.

    Google Scholar 

  4. Peter G, Blake JTD, editors. Physiology of peritoneal dialysis. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 7th ed. Philadelphia: Wolters Kluwer; 2015.

    Google Scholar 

  5. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21(7):1077–85.

    Article  CAS  PubMed  Google Scholar 

  6. Rippe B. Pathophysiological description of the ultrastructural changes of the peritoneal membrane during long-term continuous ambulatory peritoneal dialysis. Blood Purif. 1994;12(4–5):211–20.

    CAS  PubMed  Google Scholar 

  7. Rippe B, Simonsen O, Stelin G. Clinical implications of a three-pore model of peritoneal transport. Adv Perit Dial. 1991;7:3–9. Toronto.

    CAS  PubMed  Google Scholar 

  8. Rippe B. Free water transport, small pore transport and the osmotic pressure gradient three-pore model of peritoneal transport. Nephrol Dial Transplant. 2008;23(7):2147–53.

    Article  CAS  PubMed  Google Scholar 

  9. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal plasma transport: tissue concentration gradients. Am J Physiol. 1985;248(3):F425–35.

    CAS  PubMed  Google Scholar 

  10. Flessner MF. Distributed model of peritoneal transport: implications of the endothelial glycocalyx. Nephrol Dial Transplant. 2008;23(7):2142–6.

    Article  CAS  PubMed  Google Scholar 

  11. Flessner MF. Small solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol. 1996;7(2):225–32.

    CAS  PubMed  Google Scholar 

  12. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 1989;35(5):1234–44.

    Article  CAS  PubMed  Google Scholar 

  13. Ronco C. The “nearest capillary” hypothesis: a novel approach to peritoneal transport physiology. Perit Dial Int. 1996;16(2):121–5.

    CAS  PubMed  Google Scholar 

  14. Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis in rats. J Am Soc Nephrol. 1991;2(6):1092–100.

    CAS  PubMed  Google Scholar 

  15. Ronco C, Kliger A, Amici G, Virga G. Automated peritoneal dialysis: clinical prescription and technology. Perit Dial Int. 2000;20(Suppl 2):S70–6.

    PubMed  Google Scholar 

  16. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimbürger O, Simonsen O, Davenport A, Tranaeus A, Divino Filho JC. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14(9):2338–44.

    Article  CAS  PubMed  Google Scholar 

  17. Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Intraperitoneal pressure, peritoneal permeability and volume of ultrafiltration in CAPD. Adv Perit Dial. 1992;8:22–5.

    CAS  PubMed  Google Scholar 

  18. García-López E, Lindholm B, Davies S. An update on peritoneal dialysis solutions. Nat Rev Nephrol. 2012;8:10.

    Article  Google Scholar 

  19. Witowski J, Jörres A, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Bender TO, Passlick-Deetjen J, Breborowicz A. Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl. 2003;84:S148–51.

    Article  CAS  Google Scholar 

  20. Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen FD, Bro S, Friedberg M, Wieslander A. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59(1):10.

    Article  Google Scholar 

  21. Erixon M, Wieslander A, Lindén T, Carlsson O, Forsbäck G, Svensson E, Jönsson JA, Kjellstrand P. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int. 2006;26(4):497.

    Google Scholar 

  22. Mujais S, Vonesh E. Profiling of peritoneal ultrafiltration. Kidney Int. 2002;62:S17–22.

    Article  Google Scholar 

  23. Twardowski ZJ. The fast peritoneal equilibration test. Semin Dial. 1990;3(3):141–2.

    Article  Google Scholar 

  24. Zbylut J, Twardowski KON, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP. Peritoneal equilibration test. Perit Dial Int. 1987;7(3):138–48.

    Google Scholar 

  25. Clinical practice guidelines for peritoneal adequacy, update 2006. Am J Kidney Dis. 2006;48(Suppl 1):8.

    Google Scholar 

  26. Blake PG. Adequacy of dialysis revisited. Kidney Int. 2003;63(4):1587–99.

    Article  PubMed  Google Scholar 

  27. Lowrie EG, Laird NM, Parker TF, Sargent JA. Effect of the hemodialysis prescription on patient morbidity. N Engl J Med. 1981;305(20):1176–81.

    Article  CAS  PubMed  Google Scholar 

  28. Michels WM, Verduijn M, Boeschoten EW, Dekker FW, Krediet RT. Similar survival on automated peritoneal dialysis and continuous ambulatory peritoneal dialysis in a large prospective cohort. Clin J Am Soc Nephrol. 2009;4(5):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menaka Sarav MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moreno, A., Sarav, M. (2017). Physiology of Peritoneal Dialysis. In: Haggerty, S. (eds) Surgical Aspects of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-52821-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52821-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52820-5

  • Online ISBN: 978-3-319-52821-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics