Skip to main content

Ionic-Content Dependence of Viscoelasticity of the Lyotropic Chromonic Liquid Crystal Sunset Yellow

  • Chapter
  • First Online:
Lyotropic Chromonic Liquid Crystals

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A lyotropic chromonic liquid crystal (LCLC) is an orientationally ordered system made by self-assembled aggregates of charged organic molecules in water, bound by weak non-covalent attractive forces and stabilized by electrostatic repulsions.  We determine how the ionic content of the LCLC, namely the presence of mono- and divalent salts and pH enhancing agent, alter the viscoelastic properties of the LCLC. Aqueous solutions of the dye Sunset Yellow with a uniaxial nematic order are used as an example. By applying a magnetic field to impose orientational deformations, we measure the splay \(K_1\), twist  \(K_2\) and bend \(K_3\) elastic constants and rotation viscosity \(\gamma_1\) as a function of concentration of additives. The data indicate that the viscoelastic parameters are influenced by ionic content in dramatic and versatile ways. For example, the monovalent salt NaCl decreases \(K_3\) and \(K_2\) and increases \(\gamma_1\), while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of fixed length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kostko AF et al (2005) Salt effects on the phase behavior, structure, and rheology of chromonic liquid crystals. J Phys Chem B 109:19126–19133

    Article  Google Scholar 

  2. Park HS et al (2008) Self-assembly of lyotropic chromonic liquid crystal sunset yellow and effects of ionic additives. J Phys Chem B 112(51):16307–16319

    Article  Google Scholar 

  3. Park HS, Kang SW, Tortora L, Kumar S, Lavrentovich OD (2011) Condensation of self-assembled lyotropic chromonic liquid crystal sunset yellow in aqueous solutions crowded with polyethylene glycol and doped with salt. Langmuir 27(7):4164–4175

    Article  Google Scholar 

  4. Tortora L et al (2010) Self-assembly, condensation, and order in aqueous lyotropic chromonic liquid crystals crowded with additives. Soft Matter 6(17):4157–4167

    Article  ADS  Google Scholar 

  5. Baumann CG, Smith SB, Bloomfield VA, Bustamante C (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A 94:6185–6190

    Article  ADS  Google Scholar 

  6. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799

    Article  ADS  Google Scholar 

  7. Zhou S et al (2012) Elasticity of lyotropic chromonic liquid crystal probed by director reorientation in a magnetic field. Phys Rev Lett 109:037801

    Article  ADS  Google Scholar 

  8. Lydon J (2011) Chromonic liquid crystalline phases. Liq Cryst 38(11–12):1663–1681

    Article  Google Scholar 

  9. Dickinson AJ, LaRacuente ND, McKitterick CB, Collings PJ (2009) Aggregate structure and free energy changes in chromonic liquid crystals. Mol Cryst Liq Cryst 509:751–762

    Article  Google Scholar 

  10. Horowitz VR, Janowitz LA, Modic AL, Heiney PA, Collings PJ (2005) Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Phys Rev E 72:041710

    Article  ADS  Google Scholar 

  11. Luoma RJ (1995) X-ray scattering and magnetic birefringence studies of aqueous solutions of chromonic molecular aggregates. Ph.D. Thesis, Brandeis Unversity, Waltham, MA, USA

    Google Scholar 

  12. de Gennes PG, Prost J (1993) The physics of liquid crystals. Clarendon Press, Oxford, p 598

    Google Scholar 

  13. Frisken BJ, Carolan JF, Palffy-Muhoray P, Perenboom JAAJ, Bates GS (1986) SQUID susceptibility measurements of 5CB. Mol Cryst Liq Cryst Lett 3:57–62

    Google Scholar 

  14. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–649

    Article  ADS  Google Scholar 

  15. Odijk T (1986) Elastic constants of nematic solutions of rod-like and semi-flexible polymers. Liq Cryst 1:553–559

    Article  Google Scholar 

  16. Meyer RB (1982) Polymer liquid crystals. In: Ciferri A, Krigbaum WR, Meyer RB (eds). Academic Press, New York

    Google Scholar 

  17. Chami F, Wilson MR (2010) Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye sunset yellow. J Am Chem Soc 132(22):7794–7802

    Article  Google Scholar 

  18. der Schoot Pv, Cates ME (1994) The isotropic-to-nematic transition in semi-flexible micellar solutions. Europhys Lett 25:515

    Article  ADS  Google Scholar 

  19. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  Google Scholar 

  20. Manning GS (2001) Counterion condensation on a helical charge lattice. Macromolecules 34:4650–5655

    Article  ADS  Google Scholar 

  21. Manning GS (2006) The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophys J 91:3607–3616

    Article  Google Scholar 

  22. MacKintosh FC, Safran SA, Pincus PA (1990) Self-assembly of linear aggregates: the effect of electrostatics on growth. Europhys Lett 12:697–702

    Article  ADS  Google Scholar 

  23. Qiu X et al (2007) Inter-DNA attraction mediated by divalent counterions. Phys Rev Lett 99:038104

    Article  ADS  Google Scholar 

  24. Safran SA, Pincus PA, Cates ME, MacKintosh FC (1990) Growth of charged micelles. J Phys France 51:503–510

    Article  Google Scholar 

  25. Odijk T (1989) Ionic strength dependence of the length of charged linear micelles. J Phys Chem 93:3888–3889

    Article  Google Scholar 

  26. Gooding JJ, Compton RG, Brennan CM, Atherton JH (1997) A new electrochemical method for the investigation of the aggregation of dyes in solution. Electroanalysis 9(10):759–764

    Article  Google Scholar 

  27. Sobel ES, Harpst JA (1991) Effects of Na+ on the persistence length and excluded volume of T7 bacteriophage DNA. Biopolymers 31:1559–1564

    Article  Google Scholar 

  28. Manning GS (1981) A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA. Biopolymers 20:1751–1755

    Article  Google Scholar 

  29. Kam Z, Borochov N, Eisenberg H (1981) Dependence of laser light scattering of DNA on NaCl concentration. Biopolymers 20:2671–2690

    Article  Google Scholar 

  30. Odijk T (1977) Polyelectrolytes near the rod limit. J Polym Sci Part B Polym Phys 15:477–483

    Article  ADS  Google Scholar 

  31. Fixman M, Skolnick J (1977) Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10(5):944–948

    Article  ADS  Google Scholar 

  32. Cui M, Kelly JR (1999) Temperature dependence of visco-elastic properties of 5CB. Mol Cryst Liq Cryst 331:49–57

    Article  Google Scholar 

  33. Lee S-D, Meyer RB (1990) Light scattering measurements of anisotropic viscoelastic coefficients of a main-chain polymer nematic liquid crystal. Liq Cryst 7(1):15–29

    Article  Google Scholar 

  34. Lee S-D, Meyer RB (1988) Crossover behavior of the elastic coefficients and viscosities of a polymer nematic liquid crystal. Phys Rev Lett 61:2217

    Article  ADS  Google Scholar 

  35. Taratuta VG, Hurd AJ, Meyer RB (1985) Light-scattering study of a polymer hematic liquid crystal. Phys Rev Lett 55:246

    Article  ADS  Google Scholar 

  36. Zhou S et al (2014) Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. Soft Matter. doi:10.1039/c1034sm00772g

    Google Scholar 

  37. Xiao W et al (2014) Structural correspondence of solution, liquid crystal, and crystalline phases of the chromonic mesogen sunset yellow. Cryst Growth Des. doi:10.1021/cg500752x

  38. Nastishin YA et al (2005) Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter. Phys Rev E 72(4):041711

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhou, S. (2017). Ionic-Content Dependence of Viscoelasticity of the Lyotropic Chromonic Liquid Crystal Sunset Yellow. In: Lyotropic Chromonic Liquid Crystals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-52806-9_3

Download citation

Publish with us

Policies and ethics