Skip to main content

Full-Field Micromechanics of Precipitated Shape Memory Alloys

  • Chapter
  • First Online:
Micromechanics and Nanomechanics of Composite Solids
  • 2292 Accesses

Abstract

A full-field micromechanics approach is developed to predict the effective thermomechanical response of precipitation-hardened near-equiatomic Ni-rich NiTi alloys on the basis of composition and heat treatment. The microscale-informed model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time–temperature–martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated. The proposed methodology can be in principle extended to predict the post-aging thermomechanical response of other shape memory alloy systems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors would like to acknowledge and thank Brian Franco and the other members of the Microstructural Engineering of Structural and Active Materials (MESAM) Research Group at Texas A & M University for preparing and characterizing the experimental specimens.

References

  • Abaqus: Analysis User’s Manual. Dassault Systèmes of America Corporation, Woodlands Hills (2009)

    Google Scholar 

  • Allafi, J., Ren, X., Eggeler, G.: The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater. 50(4), 793–803 (2002)

    Article  Google Scholar 

  • Anderson, A., Pedersen, D., Sivertsen, A., Sangesland, S.: Detailed study of shape memory alloys in oil well applications. Technical Report, SINTEF Petroleum Research, Trondheim, Norway (1999)

    Google Scholar 

  • Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plast. 26(7), 976–991 (2010)

    Article  MATH  Google Scholar 

  • Ashby, M.F., Bréchet, Y.J.M.: Designing hybrid materials. Acta Mater. 53, 5801–5821 (2003)

    Article  Google Scholar 

  • Auricchio, F., Bonetti, E., Scalet, G., Ubertini, F.: Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. Int. J. Plast. 59, 30–54 (2014)

    Article  Google Scholar 

  • Bansiddhi, A., Sargeant, T.D., Stupp, S.I., Dunand, D.C.: Porous NiTi for bone implants: a review. Acta Biomater. 4, 773–782 (2008)

    Article  Google Scholar 

  • Bataillard, L., Bidaux, J.E., Gotthard, R.: Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations. Philos. Mag. A 78(2), 327–344 (1998)

    Article  Google Scholar 

  • Baxevanis, T., Cox, A., Lagoudas, D.C.: Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech. 65, 1167–1185 (2014)

    Article  MATH  Google Scholar 

  • Bellouard, Y.: Shape memory alloys for microsystems: a review from a material perspective. Mater. Sci. Eng. A 481–482, 582–589 (2008)

    Article  Google Scholar 

  • Benefan, O., Brown, J., Calkins, F.T., Kumar, P., Stebner, A.P., Turner, T.L., Vaidyanathan, R., Webster, J., Young, M.L.: Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int. J. Mech. Mater. Design 10, 1–42 (2014)

    Article  Google Scholar 

  • Bo, Z., Lagoudas, D.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations. Int. J. Eng. Sci. 37(9), 1089–1140 (1999a)

    MathSciNet  MATH  Google Scholar 

  • Bo, Z., Lagoudas, D.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops. Int. J. Eng. Sci. 37(9), 1205–1249 (1999b)

    MathSciNet  MATH  Google Scholar 

  • Bo, Z., Lagoudas, D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations. Int. J. Eng. Sci. 37(9), 1089–1140 (1999c)

    MathSciNet  MATH  Google Scholar 

  • Bo, Z., Lagoudas, D.C., Miller, D.: Material characterization of SMA actuators under nonproportional thermomechanical loading. J. Eng. Mater. Technol. Trans. ASME 121(1), 75–85 (1999)

    Article  Google Scholar 

  • Calkins, F.T., Mabe, J.H.: Shape memory alloy based morphing aerostructures. J. Mech. Des. 132, 111012 (2010)

    Article  Google Scholar 

  • Cisse, C., Zaki, W., Ben Zineb, T.: A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76, 244–284 (2016)

    Article  Google Scholar 

  • Collard, C., Ben Zineb, T.: Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model. Compos. Part B 43(6), 2560–2576 (2012)

    Article  Google Scholar 

  • Collard, C., Ben Zineb, T., Patoor, E., Ben Salah, M.O.: Micromechanical analysis of precipitate effects on shape memory alloys behaviour. Mater. Sci. Eng. A 481–482(1–2 C), 366–370 (2008)

    Google Scholar 

  • Dong, J., Cai, C.S., Okeil, A.M.: Overview of potential and existing applications of shape memory alloys in bridges. J. Bridg. Eng. 16, 305–315 (2011)

    Article  Google Scholar 

  • Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Duerig, T., Pelton, A., Stöckel, D.: An overview of NiTiNOL medical applications. Mater. Sci. Eng. A 273–275, 149–160 (1999)

    Article  Google Scholar 

  • Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1–2), 24–33 (2004)

    Article  Google Scholar 

  • Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B.: Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci. 57, 911–946 (2012)

    Article  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Firstov, G.S., Van Humbeeck, J., Koval, Y.N.: High temperature shape memory alloys problems and prospects. J. Intell. Mater. Syst. Struct. 17, 1041 (2006)

    Article  Google Scholar 

  • Franco, B.E.: Engineering the martensitic transformation hysteresis of Ni-rich NiTi alloys. Master’s Thesis, Texas A&M University (2014)

    Google Scholar 

  • Frenzel, J., George, E.P., Dlouhy, A., Somsen, C., Wagner, M.F.X., Eggeler, G.: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58(9), 3444–3458 (2010)

    Article  Google Scholar 

  • Geng, Y., Lee, D., Xu, X., Nagasako, M., Jin, M., Jin, X., Omori, T., Kainuma, R.: Coherency of ordered γ’ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys. J. Alloys Compd. 628, 287–292 (2015)

    Article  Google Scholar 

  • Hamilton, R., Sehitoglu, H., Chumlyakov, Y., Maier, H.: Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 52, 3383–3402 (2004)

    Article  Google Scholar 

  • Hartl, D.J., Lagoudas, D.: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221(Special Issue), 535–552 (2007)

    Article  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  MATH  Google Scholar 

  • Hornbogen, E.: The effect of variables on martensitic-transformation temperatures. Acta Metall. 33(4), 595–601 (1985)

    Article  Google Scholar 

  • Huet, C.: Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31(12), 787–829 (1999)

    Article  Google Scholar 

  • Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  MATH  Google Scholar 

  • Karaca, H., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y., Maier, H.: Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys - a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009)

    Article  Google Scholar 

  • Karaca, H.E., Saghaian, S.M., Ded, G., Tobe, H., Basaran, B., Maier, H.J., Noebe, R.D., Chumlyakov, Y.I.: Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 61(19), 7422–7431 (2013)

    Article  Google Scholar 

  • Karaman, I., Kulkarni, A.V., Luo, Z.P.: Transformation behavior and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Philos. Mag. 85, 1729–1745 (2005)

    Article  Google Scholar 

  • Kröger, A., Dziaszyk, S., Frenzel, J., Somsen, C., Dlouhy, A., Eggeler, G.: Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining. Mater. Sci. Eng. A 481–482(1–2 C), 452–456 (2008)

    Google Scholar 

  • Lagoudas, D. (ed.): Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    MATH  Google Scholar 

  • Lagoudas, D., Bo, Z., Qidwai, M.A.: A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech. Comput. Mater. Struct. 4, 153–179 (1996)

    Article  Google Scholar 

  • Lagoudas, D., Hartl, D., Chemisky, Y., Machado, L., Popov, P.: Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast. 32–33, 155–183 (2012)

    Article  Google Scholar 

  • Lejeunes, S., Bourgeois, S., et al.: Une Toolbox Abaqus pour le calcul de propriétés effectives de milieux hétérogènes, in: 10e colloque national en calcul des structures, http://www.lma.cnrs-mrs.fr/spip.php?article171 (2011)

  • Leng, J., Lan, X., Liu, Y., Du, S.: Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)

    Article  Google Scholar 

  • Lester, B.T., Baxevanis, T., Chemisky, Y., Lagoudas, D.C.: Review and perspectives: shape memory alloy composite systems. Acta Mech. 226(12), 3907–3960 (2015)

    Article  Google Scholar 

  • Li, S., Wongsto, A.: Unit cells for micromechanical analyses of particle-reinforced composites. Mech. Mater. 36, 543–572 (2004)

    Article  Google Scholar 

  • Ma, J., Karaman, I., Noebe, R.D.: Medical applications of shape memory alloys. Int. Mater. Rev. 55(5), 257–315 (2010)

    Article  Google Scholar 

  • Machado, L., Savi, M.: Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36, 683–691 (2003)

    Article  Google Scholar 

  • Madras, G., McCoy, B.J.: Temperature effects on the transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci. 59(13), 2753–2765 (2004)

    Article  Google Scholar 

  • Manchiraju, S., Anderson, P.: Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model. Int. J. Plast. 26(10), 1508–1526 (2010)

    Article  MATH  Google Scholar 

  • Morgan, N.B.: Medical shape memory alloy applications – the market and its products. Mater. Sci. Eng. A 378, 16–23 (2004)

    Article  Google Scholar 

  • Morin, C., Moumni, Z., Zaki, W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27(5), 748–767 (2011)

    Article  MATH  Google Scholar 

  • Nishida, M., Wayman, C.M., Kainuma, R., Honma, T.: Further electron microscopy studies of the Ti11Ni14 phase in an aged Ti–52at%Ni shape memory alloy. Scr. Metall. 20(6), 899–904 (1986)

    Article  Google Scholar 

  • Nishida, M., Wayman, C.M., Chiba, A.: Electron-microscopy studies of the martensitic-transformation in an aged Ti-51 at. % Ni shape memory alloy. Metallography 21(3), 275–291 (1988)

    Google Scholar 

  • Otsuka, K., Ren, X.: Factors affecting the ms temperature and its control in shape-memory alloys. Mater. Sci. Forum 177, 394–395 (2002)

    Google Scholar 

  • Ozbulut, O.E., Hurlebaus, S., Desroches, R.: Seismic response control using shape memory alloys: a review. J. Intell. Mater. Syst. Struct. 22, 1531 (2011)

    Article  Google Scholar 

  • Panchenko, E.Y., Chumlyakov, Y.I., Kireeva, I.V., Ovsyannikov, A.V., Sehitoglu, H., Karaman, I., Maier, Y.H.J.: Effect of disperse Ti3Ni4 particles on the martensitic transformations in titanium nickelide single crystals. Phys. Metals Metall. 106(6), 577–589 (2008)

    Article  Google Scholar 

  • Patoor, E., Lagoudas, D., Entchev, P., Brinson, L., Gao, X.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5–6), 391–429 (2006)

    Article  Google Scholar 

  • Pindera, M.-J., Khatam, H., Drago, A., Bansal, Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. Part B Eng. 40(5), 349–378 (2009)

    Article  Google Scholar 

  • Pons, J., Cesari, E., Seguí, C., Masdeu, F., Santamarta, R.: Ferromagnetic shape memory alloys: alternatives to Ni-Mn-Ga. Materials Sci. Eng. A 481–482, 57–65 (2008)

    Article  Google Scholar 

  • Popov, P., Lagoudas, D.: A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int. J. Plast. 23(10–11), 1679–1720 (2007)

    Article  MATH  Google Scholar 

  • Ratna, D., Karger-Kocsis, J.: Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)

    Article  Google Scholar 

  • Saburi, T., Nenno, S., Fukuda, T.: Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys. J. Less Common Met. 125(0), 157–166 (1986)

    Article  Google Scholar 

  • Schryvers, D., Tirry, W., Yang, Z.: Measuring strain fields and concentration gradients around Ni4Ti3 precipitates. Mater. Sci. Eng. A 438–440, 485–488 (2006)

    Article  Google Scholar 

  • Sehitoglu, H., Karaman, I., Anderson, R., Zhang, X., Gall, K., Maier, H.J., Chumlyakov, Y.: Compressive response of NiTi single crystals. Acta Mater. 48(13), 3311–3326 (2000)

    Article  Google Scholar 

  • Sehitoglu, H., Anderson, R., Karaman, I., Gall, K., Chumlyakov, Y.: Cyclic deformation behavior of single crystal NiTi. Mater. Sci. Eng. A 314(1–2), 67–74 (2001a)

    Article  Google Scholar 

  • Sehitoglu, H., Jun, J., Zhang, X., Karaman, I., Chumlyakov, Y., Maier, H.J., Gall, K.: Shape memory and pseudoelastic behavior of 51.5% Ni-Ti single crystals in solutionized and overaged state. Acta Mater. 49(17), 3609–3620 (2001b)

    Google Scholar 

  • Sehitoglu, H., Karaman, I., Zhang, X., Viswanath, A., Chumlyakov, Y., Maier, H.J.: Strain-temperature behavior of NiTiCu shape memory single crystals. Acta Mater. 49(17), 3621–3634 (2001c)

    Article  Google Scholar 

  • Song, G., Ma, N., Li, H.-N.: Applications of shape memory alloys in civil structures. Eng. Struct. 28, 1266–1274 (2006)

    Article  Google Scholar 

  • Stroz, D., Kwarciak, J., Morawiec, H.: Effect of aging on martensitic-transformation in NiTi shape memory alloy. J. Mater. Sci. 23(11), 4127–4131 (1988)

    Article  Google Scholar 

  • Tang, W.: Thermodynamic study of the low-temperature phase B19 and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall. Mater. Trans. A 28(3), 537–544 (1997)

    Article  Google Scholar 

  • Wagner, M.F.-X., Windl, W.: Elastic anisotropy of Ni4Ti3 from first principles. Scr. Mater. 60(4), 207–210 (2009)

    Article  Google Scholar 

  • Yu, C., Kang, G., Kan, Q., Song, D.: A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NITI shape memory alloys. Int. J. Plast. 44, 161–191 (2013)

    Article  Google Scholar 

  • Yu, C., Kang, G., Kan, Q.: Crystal plasticity based constitutive model of niti shape memory alloy considering different mechanisms of inelastic deformation. Int. J. Plast. 54, 132–162 (2014)

    Article  Google Scholar 

  • Zarinejad, M., Liu, Y., Tong, Y.X.: Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics 17(11), 914–919 (2009)

    Article  Google Scholar 

  • Zhou, N., Shen, C., Wagner, M.-X., Eggeler, G., Mills, M., Wang, Y.: Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni. Acta Mater. 58, 6685–6694 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0218. The authors would like to acknowledge the crucial work of Austin Cox in developing and implementing the predictive model presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Lagoudas .

Editor information

Editors and Affiliations

Appendix: Constitutive Law for Polycrystalline SMAs

Appendix: Constitutive Law for Polycrystalline SMAs

The model is developed within the framework of continuum thermodynamics and adopts the classical rate-independent small-strain flow theory for the evolution equations of the transformation strains (Lagoudas et al., 19962012; Lagoudas, 2008). This model is used to describe the response of both precipitated and unprecipitated polycrystalline SMAs. By utilizing infinitesimal strains and assuming an additive strain rate decomposition, the increments of the total strain tensor components, ij , are given as

$$\displaystyle{ d\varepsilon _{ij} = S_{ijkl}d\sigma _{kl} + dS_{ijkl}\sigma _{kl} + d\varepsilon _{ij}^{t}, }$$
(8.8)

where σ ij and ɛ ij t are the Cartesian components of the stress and transformation strain tensor, respectively, and S ijkl represents the “current” compliance tensor. Standard Einstein notation is used with summation over repeated indices assumed. The “current” compliance tensor varies with the martensite volume fraction, ξ, as S ijkl = (1 −ξ)S ijkl A + ξS ijkl M, where S ijkl A and S ijkl M are the components of the compliance tensor of the polycrystalline SMA material in the austenitic and martensitic phase, respectively. The assumption of elastic isotropy for both the austenitic and martensitic phases results in \(S_{ijkl}^{\alpha } = \frac{1+\nu _{\alpha }} {2E_{\alpha }}(\delta _{il}\delta _{jk} +\delta _{ik}\delta _{jl}) - \frac{\nu _{\alpha }} {E_{\alpha }}\delta _{ij}\delta _{kl}\), where the index α stands for A and M in the cases of pure austenite and martensite, respectively. The Young’s modulus and Poisson’s ratios of the SMA’s two phases are denoted E α and ν α , respectively, and δ ij is Kronecker’s delta.

An evolution equation of the transformation strain is defined so that it is related to the evolution of martensite volume fraction ξ,

$$\displaystyle{ d\varepsilon _{ij}^{t} = \Lambda _{ ij}d\xi,\ \ \Lambda _{ij} = \left \{\begin{array}{@{}l@{\quad }l@{}} \Lambda _{ij}^{fwd},\;d\xi> 0,\quad \\ \Lambda _{ij}^{rev},\;d\xi <0, \quad \end{array} \right. }$$
(8.9)

where, \(\Lambda _{ij}\), the components of the direction tensor, are defined as

$$\displaystyle{ \Lambda _{ij}^{fwd} = \frac{3} {2} \frac{H^{cur}} {\sigma } \sigma _{ij}^{{\prime}},\ \ \Lambda _{ ij}^{rev} = \frac{\varepsilon _{ij}^{t}} {\xi }. }$$
(8.10)

Here, H cur is the uniaxial transformation strain magnitude for complete transformation, \(\sigma = \sqrt{\frac{3} {2}\sigma _{ij}^{{\prime}}\sigma _{ij}^{{\prime}}}\) is the Mises equivalent effective stress, and σ ij = σ ij σ kk δ ij ∕3 are the stress deviator components. Forward transformation generates transformation strain in the direction of the deviatoric stress, which motivates the selected J 2 form of the direction tensor. During reverse phase transformation, it is assumed that the direction and magnitude of the transformation strain recovery is governed by the average orientation of martensite at transformation reversal (the cessation of forward transformation, be it partial or full). This definition ensures a zero transformation strain for every state with a null martensite volume fraction.

During transformation, the stress tensor components should remain on the transformation surface:

$$\displaystyle{ \Phi = 0,\;\;\Phi = \left \{\begin{array}{@{}l@{\quad }l@{}} \Phi ^{fwd} =\pi ^{fwd} - Y _{ 0},\;d\xi> 0, \quad \\ \Phi ^{rev} = -\pi ^{rev} - Y _{0},\;d\xi <0,\quad \end{array} \right. }$$
(8.11)

with π fwd, π rev being the thermodynamic driving forces for forward and reverse transformation, respectively, and Y 0 being the critical value of the thermodynamic force to both initiate and sustain forward and reverse phase transformation.

The thermodynamic driving force for forward transformation is written as

$$\displaystyle{ \pi ^{fwd} =\sigma _{ ij}\Lambda _{ij}^{fwd} + \frac{1} {2}\Delta S_{ijkl}\sigma _{ij}\sigma _{kl} + \rho \Delta s_{0}T -\rho \Delta u_{0} - f^{fwd}, }$$
(8.12)

and for reverse transformation

$$\displaystyle{ \pi ^{rev} =\sigma _{ ij}\Lambda _{ij}^{rev} + \frac{1} {2}\Delta S_{ijkl}\sigma _{ij}\sigma _{kl} + \rho \Delta s_{0}T -\rho \Delta u_{0} - f^{rev}. }$$
(8.13)

f fwd and f rev are functions describing the transformation hardening behavior during forward and reverse phase transformation, respectively. s 0 and u 0 are the specific entropy and internal energy, respectively, ρ is the density, and \(\Delta\) denotes the difference in property between the martensitic and the austenitic states.

8.1.1 Variation of the Transformation Strain Magnitude

The transformation strain magnitude, H cur, is a function of the stress state since precipitated polycrystalline SMA materials do not exhibit a constant maximum attainable transformation strain at all stress levels (Bo and Lagoudas, 1999c; Bo et al., 1999). A saturated value of maximum attainable transformation strain, H sat , is reached at a high-stress level, which is dependent on the SMA material and the processing conditions. Following this observation, H cur is represented by the following decaying exponential function:

$$\displaystyle{ H^{cur}(\sigma ) = H_{ sat}\left (1 - e^{-k\sigma }\right ). }$$
(8.14)

The parameter k controls the rate at which H cur exponentially evolves from 0 to H sat .

8.1.2 Description of a “Smooth” Thermomechanical Response

In precipitated polycrystalline SMAs, local transformation initiates in a non-uniform manner, resulting in an experimentally observed gradual transition from the elastic to transformation response and vice versa. To capture the gradual transformation initiation and completion response, the hardening functions are given as general power laws in terms of ξ with real components:

$$\displaystyle{ f^{fwd}(\xi ) = \frac{1} {2}\alpha _{1}\left [1 +\xi ^{n_{1} } - (1-\xi )^{n_{2} }\right ] + \alpha _{3}, }$$
(8.15)
$$\displaystyle{ f^{rev}(\xi ) = \frac{1} {2}\alpha _{2}\left [1 +\xi ^{n_{3} } - (1-\xi )^{n_{4} }\right ] -\alpha _{3}, }$$
(8.16)

where, α i  (i = 1, 2, 3) are coefficients that assume real number values and n i  (i = 1, 2, 3) are exponents that assume real numbers in the interval (0, 1]. If n 1 and/or n 3 take values less than 1, the forward and/or reverse phase transformations, respectively, are initiated in a “smooth” gradual fashion. Similarly, if n 2 and/or n 4 take values less than 1, the forward and/or reverse phase transformations, respectively, are completed in a “smooth” gradual fashion.

8.1.3 Calibration of the Model

Given the above constitutive relations, the following model parameters must be calibrated: (1) the elastic parameters of the precipitated polycrystalline SMA in the austenitic and martensitic states, (2) parameters contained in the functional form of the maximum transformation strain H cur(σ), and (3) six model parameters (\(\rho \Delta s_{0}\), \(\rho \Delta u_{0}\), α 1, α 2, α 3, Y 0) that are characteristic of the martensitic transformation. The common material properties that are used to calibrate the model are E A , E M , ν A , ν M , H sat , M s , M f , A s , A f , C M , and C A . M s , M f , A s , and A f are the martensitic-start, martensitic-finish, austenitic-start, and austenitic-finish temperatures at zero load, respectively, and C M and C A are the forward and reverse transformation slopes in the stress-temperature phase diagram, respectively (Fig. 8.2). The elastic constants can be calculated directly from nominally isothermal stress–strain curves where loads are applied at temperatures outside the transformation regions. The parameters for H cur(σ) can be calibrated directly from material testing under thermal variations at a constant applied load, where the value of k in particular is chosen to best fit the experimental trend. The remaining six parameters are calibrated by considering the conditions under which forward transformation begins and ends in the stress-temperature space (Lagoudas, 2008). The hardening coefficients n 1n 4 do not have an associated material property but are directly chosen to best fit the four corners of the transformation hysteresis plots.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Baxevanis, T., Solomou, A., Karaman, I., Lagoudas, D.C. (2018). Full-Field Micromechanics of Precipitated Shape Memory Alloys. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics