Skip to main content

Micromechanical Modeling of Polymeric Composite Materials with Moisture Absorption

  • Chapter
  • First Online:
Book cover Micromechanics and Nanomechanics of Composite Solids

Abstract

Natural fiber reinforced composites and wood cell wall are two typical polymeric composite materials that can uptake large amounts of water in the humid environment. This chapter presents a micromechanical scheme to study the mechanical degradation of these polymeric composites induced by moisture absorption that takes place in the matrix and/or the reinforcing phase. The moisture absorption and the mechanical degradation are two thermodynamic processes correlated with each other. Taking both processes into consideration, a modified Mori–Tanaka method with introduced damage variables is proposed. The moisture absorption and the mechanical degradation are, respectively, described by eigenstrains and damage variables. After specifying this model with different inclusion shapes, the overall swelling deformation and the mechanical degradation of the randomly oriented and the unidirectional straight fiber reinforced polymeric composites are studied. The theoretical predictions are compared with the experimental results from other literature and a good agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudi, J.: Mechanics of Composite Materials – A Unified Micromechanical Approach. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  • Alvarez, V., Fraga, A., Vazquez, A.: Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer–sisal fiber biocomposites. J. Appl. Polym. Sci. 91, 4007–4016 (2004)

    Article  Google Scholar 

  • Arbelaiz, A., Fernández, B., Ramos, J.A., Retegi, A., Llano-Ponte, R., Mondragon, I.: Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 65, 1582–1592 (2005)

    Article  Google Scholar 

  • Astley, O.M., Donald, A.M.: A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules. 2, 672–680 (2001)

    Article  Google Scholar 

  • Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  • Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Article  Google Scholar 

  • Cave, I.: The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2, 268–278 (1968)

    Article  Google Scholar 

  • Cave, I.: The longitudinal Young’s modulus of Pinus radiata. Wood Sci. Technol. 3, 40–48 (1969)

    Article  Google Scholar 

  • Chen, T., Dvorak, G.J., Benveniste, Y.: Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. ASME Trans. Ser. E J. Appl. Mech. 59, 539–546 (1992)

    Article  MATH  Google Scholar 

  • Cheung, H.-Y., Ho, M.-P., Lau, K.-T., Cardona, F., Hui, D.: Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B. 40, 655–663 (2009)

    Article  Google Scholar 

  • Chow, C., Wang, J.: An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fract. 33, 3–16 (1987)

    Article  Google Scholar 

  • Chow, C., Xing, X., Li, R.: Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 67, 306–313 (2007)

    Article  Google Scholar 

  • Desrumaux, F., Meraghni, F., Benzeggagh, M.: Generalised Mori-Tanaka scheme to model anisotropic damage using numerical Eshelby tensor. J. Compos. Mater. 35, 603–624 (2001)

    Article  Google Scholar 

  • Dhakal, H., Zhang, Z., Richardson, M.: Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 67, 1674–1683 (2007)

    Article  Google Scholar 

  • Eder, M., Arnould, O., Dunlop, J.W., Hornatowska, J., Salmén, L.: Experimental micromechanical characterisation of wood cell walls. Wood Sci. Technol. 47, 163–182 (2013)

    Article  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Garg, S.K.: Assessment of the intrinsic birefringence of partially oriented poly (ethylene terephthalate) yarns. J. Appl. Polym. Sci. 27, 2857–2867 (1982)

    Article  Google Scholar 

  • Hazarika, A., Mandal, M., Maji, T.K.: Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites. Compos. Part B. 60, 568–576 (2014)

    Article  Google Scholar 

  • Hill, R.: A self-consistent mechanics of composite materials. J Mech. Phys. Solids. 13, 213–222 (1965)

    Article  Google Scholar 

  • Hofstetter, K., Hellmich, C., Eberhardsteiner, J.: Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur. J. Mech. A Solids. 24, 1030–1053 (2005)

    Article  MATH  Google Scholar 

  • Hofstetter, K., Hellmich, C., Eberhardsteiner, J.: Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung. 61, 343–351 (2007)

    Article  Google Scholar 

  • Hu, R.-H., Sun, M.-Y., Lim, J.-K.: Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater. Des. 31, 3167–3173 (2010)

    Article  Google Scholar 

  • Jakob, H., Tschegg, S., Fratzl, P.: Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules. 29, 8435–8440 (1996)

    Article  Google Scholar 

  • José da Silva, L., Hallak Panzera, T., Luis Christoforo, A., Miguel Pereira Dur, L., Antonio Rocco Lahr, F.: Numerical and experimental analyses of biocomposites reinforced with natural fibres. Int. J. Mater. Eng. 2, 43–49 (2012)

    Article  Google Scholar 

  • Karris, A.: An examination of the Mori-Tanaka effective medium—approximation for multiphase composites. J. Appl. Mech. 56, S3 (1989)

    Google Scholar 

  • Kojima, Y., Yamamoto, H.: Effect of microfibril angle on the longitudinal tensile creep behavior of wood. J. Wood Sci. 50, 301–306 (2004)

    Article  Google Scholar 

  • Kojima, Y., Yamamoto, H.: Effect of moisture content on the longitudinal tensile creep behavior of wood. J. Wood Sci. 51, 462–467 (2005)

    Article  Google Scholar 

  • Meraghni, F., Benzeggagh, M.: Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos. Sci. Technol. 55, 171–186 (1995)

    Article  Google Scholar 

  • Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Mochida, T., Taya, M., Obata, M.: Effect of damaged particles on the stiffness of a particle/metal matrix composite. JSME Int. J. Ser. 1 Solid Mech. Strength Mater. 34, 187–193 (1991)

    Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Mura, T.: Micro-Mechanics of Defects in Solids. Springer (1987)

    Google Scholar 

  • Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, 2nd edn. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  • Okereke, M., Akpoyomare, A., Bingley, M.: Virtual testing of advanced composites, cellular materials and biomaterials: A review. Compos. Part B. 60, 637–662 (2014)

    Article  Google Scholar 

  • Pan, Y., Zhong, Z.: A nonlinear constitutive model of unidirectional natural fiber reinforced composites considering moisture absorption. J. Mech. Phys. Solids. 69, 132–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, Y., Zhong, Z.: A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption. Mech. Mater. (2015)

    Google Scholar 

  • Pan, Y., Zhong, Z.: Micromechanical modeling of the wood cell wall considering moisture absorption. Compos. Part B. 91, 27–35 (2016)

    Article  Google Scholar 

  • Pandey, J.K., Ahn, S.H., Lee, C.S., Mohanty, A.K., Misra, M.: Recent advances in the application of natural fiber based composites. Macromol. Mater. Eng. 295, 975–989 (2010)

    Article  Google Scholar 

  • Qing, H., Mishnaevsky Jr., L.: 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech. Mater. 41, 1034–1049 (2009)

    Article  Google Scholar 

  • Qiu, Y., Weng, G.: On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci. 28, 1121–1137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu, Y., Weng, G.: The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite. Int. J. Solids Struct. 27, 1537–1550 (1991)

    Article  MATH  Google Scholar 

  • Qu, J.: The effect of slightly weakened interfaces on the overall elastic properties of composite materials. Mech. Mater. 14, 269–281 (1993)

    Article  Google Scholar 

  • Ravichandran, G., Liu, C.: Modeling constitutive behavior of particulate composites undergoing damage. Int. J. Solids Struct. 32, 979–990 (1995)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press (2004)

    Google Scholar 

  • Saavedra Flores, E., de Souza Neto, E., Pearce, C.: A large strain computational multi-scale model for the dissipative behaviour of wood cell-wall. Comput. Mater. Sci. 50, 1202–1211 (2011)

    Article  Google Scholar 

  • Saavedra Flores, E., DiazDelaO, F., Friswell, M., Ajaj, R.: Investigation on the extensibility of the wood cell-wall composite by an approach based on homogenisation and uncertainty analysis. Compos. Struct. 108, 212–222 (2014)

    Article  Google Scholar 

  • Saheb, D.N., Jog, J.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)

    Article  Google Scholar 

  • Salmén, L.: Micromechanical understanding of the cell-wall structure. C. R. Biol. 327, 873–880 (2004)

    Article  Google Scholar 

  • Sgriccia, N., Hawley, M.C., Misra, M.: Characterization of natural fiber surfaces and natural fiber composites. Compos. A Appl. Sci. Manuf. 39, 1632–1637 (2008)

    Article  Google Scholar 

  • Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250 (2004)

    Article  Google Scholar 

  • Smith, I.: Fracture and Fatigue in Wood. Wiley (2003)

    Google Scholar 

  • Song, J.-H., Mun, S.-D., Kim, C.-S.: Mechanical properties of sisal natural fiber composites according to strain rate and absorption ratio. Polym. Compos. 32, 1174–1180 (2011)

    Article  Google Scholar 

  • Srubar, W.V.: An analytical model for predicting the freeze–thaw durability of wood–fiber composites. Compos. Part B. 69, 435–442 (2015)

    Article  Google Scholar 

  • Tandon, G., Weng, G.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 27, 111–132 (1986)

    Article  Google Scholar 

  • Tashiro, K., Kobayashi, M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer. 32, 1516–1526 (1991)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer (2002)

    Google Scholar 

  • Watt, J.P., Davies, G.F., O'Connell, R.J.: The elastic properties of composite materials. Rev. Geophys. 14, 541–563 (1976)

    Article  Google Scholar 

  • Zheng, S., Denda, M., Weng, G.: Interfacial partial debonding and its influence on the elasticity of a two-phase composite. Mech. Mater. 32, 695–709 (2000)

    Article  Google Scholar 

  • Zhong, Z., Meguid, S.: On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface. J. Elast. 46, 91–113 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Project No. 11572227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhong .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The bulk and the shear moduli of natural fiber and matrix are, respectively, expressed as

$$ \left\{\begin{array}{l}{\kappa}^{(i)}=\frac{E^{(i)}}{3\left(1-2{\upsilon}^{(i)}\right)}\\ {}{\mu}^{(i)}=\frac{E^{(i)}}{2\left(1+{\upsilon}^{(i)}\right)}\end{array}\right.\kern2.25em \left(i=1,2\right) $$
(16.A.1)

In our theoretical predictions, Poison’s ratios are \( {\upsilon}^{(1)}={\upsilon}_0^{(1)}=0.25=1/4 \) for sisal fiber and \( {\upsilon}^{(2)}={\upsilon}_0^{(2)}=0.33\approx 1/3 \) for polypropylene matrix. Substituting Eq. (16.A.1) into (16.24), we arrive at

$$ \begin{array}{l}\kappa ={E}^{(2)}+\dfrac{f\left(2{E}^{(1)}/3-{E}^{(2)}\right)\left(3{E}^{(2)}+2{E}^{(1)}/5+9{E}^{(2)}/8\right)}{2\left(1-f\right){E}^{(1)}+3{fE}^{(2)}+9{E}^{(2)}/8+2{E}^{(1)}/5}\\ \\ {}\mu =\dfrac{3{E}^{(2)}}{8}-\dfrac{f\left(2{E}^{(1)}/5-3{E}^{(2)}/8\right)\left(3{E}^{(2)}{\delta}_1/2+2{E}^{(1)}{\delta}_2\right)}{3{E}^{(2)}\left(2{E}^{(1)}/5+3{E}^{(2)}/8\right){\eta}_1-3{E}^{(2)}{\eta}_2/8+2{E}^{(1)}\left({\eta}_3-{\eta}_4\right)}\end{array} $$
(16.A.2)

As seen in Eq. (16.A.2), the bulk and shear moduli of the composite are expressed by Young’s moduli of the fiber and the matrix (i.e., E (1) and E (2)).

By means of Eqs. (16.25) and (16.A.2), we can fit the experimental data of (E 0, f) (the scatter points in Fig. 16.4) by the commercial software Mathematica 7.0 with the command FindFit to obtain the moduli \( {E}_0^{(1)}=15.03\ \mathrm{GPa} \) and \( {E}_0^{(2)}=2.37\ \mathrm{GPa} \), as shown in Fig. 16.4. The fitting procedure is based on the least square method. The square of the residuals R between the results of theoretical predictions and experimental data should be minimized such as

$$ \left\{\begin{aligned}&R=\sum_{i=1}^n{\left[E\left({E}_0^{(1)},{E}_0^{(2)},f\right)-{E}_0\right]}^2\\ &\dfrac{\partial R}{\partial {E}_0^{(1)}}=0\\ &\dfrac{\partial R}{\partial {E}_0^{(2)}}=0\end{aligned}\right. $$
(16.A.3)

from which the two material parameters \( {E}_0^{(1)} \) and \( {E}_0^{(2)} \) are finally determined.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pan, Y., Zhong, Z. (2018). Micromechanical Modeling of Polymeric Composite Materials with Moisture Absorption. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics