Skip to main content

Effects of Local Spin on Overall Properties of Granule Materials

  • Chapter
  • First Online:
  • 2196 Accesses

Abstract

This paper proposes continuumnization of a set of rigid body spherical particles which are regularly arranged and connected by springs. Continuumnization converts translation and spin of all particles to spatially varying functions, together with derivation of material properties from spring constants. It is shown that a function of particles’ spin tends to vanish in the limit as the radius of the particles goes to zero. The governing equations of the functions of translation and spin are studied for a symmetric assembly of rigid body particles. The characteristic equation of the governing equations shows the presence of high-frequency modes of spin, as well as waves which correspond to P- and S-waves of ordinary continuum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that while the ordinary definition of the gradient is \((\boldsymbol{\nabla }\mathbf{u})_{ij} = \frac{\partial u_{i}} {\partial x_{j}}\), we define the gradient component in this way in order to make the expression of \(\boldsymbol{\nabla }\cdot \mathbf{n}\) consistent.

References

  • Beale, P.D., Srolovitz, D.J.: Elastic fracture in random materials. Phys. Rev. B 37(10), 5500–5507 (1988)

    Article  Google Scholar 

  • Buxton, G.A., Care, C.M., Cleaver, D.J.: A lattice spring model of heterogeneous materials with plasticity. Model. Simul. Mater. Sci. Eng. 9(6), 485–497 (2001)

    Article  Google Scholar 

  • Chang, C.S., Ma, L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992)

    Article  MATH  Google Scholar 

  • Cosserat, E., Cosserat, F.: Theorie des Corps deformables. A. Hermann et Fils, Paris (1909) [in French]

    MATH  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Curtin, W.A., Scher, H.: Mechanics modeling using a spring network. J. Mater. Res. 5, 554–562 (1990)

    Article  Google Scholar 

  • Cusatis, G., Bazant, Z.P., Cedolin, L.: Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. 129(12), 1439–1448 (2003)

    Article  MATH  Google Scholar 

  • Eringen, A.C.: Non-local continuum mechanics and some application. In: Barut, A.O. (ed.) Non-linear Equations in Physics and Mathematics, pp. 271–318. Riedel, Dordrecht (1978)

    Chapter  Google Scholar 

  • Hori, M., Wijerathene, L., Chen, J., Ichimura, T.: Continuumnization of regularly arranged rigid bodies. J. Jpn. Soc. Civ. Eng. 4(1), 38–45 (2016)

    Google Scholar 

  • Karihaloo, B.L., Shao, P.F., Xiao, Q.Z.: Lattice modelling of the failure of particle composites. Eng. Fract. Mech. 70(17), 2385–2406 (2003)

    Article  Google Scholar 

  • Kawai, T.: New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48(1), 207–229 (1978)

    Article  MathSciNet  Google Scholar 

  • Kozicki, J., Tejchman, J.: Modelling of fracture process in concrete using a novel lattice model. Granul. Matter 10(5), 377–388 (2008)

    Article  MATH  Google Scholar 

  • Kroner, E., Datta, B.K.: Non-local theory of elasticity for a finite inhomogeneous medium: a derivation from lattice theory. In: Simmons, J.A., de Wit, R., Bullough, R. (eds.) Fundamental Aspects of Dislocation Theory. National Bureau of Standards Special Publication 317, vol. II, pp. 737–74. National Bureau of Standards, Washington (1970)

    Google Scholar 

  • Kuhn, M.: Discussion on the asymmetry of stress in granular media. Int. J. Solids Struct. 40, 1805–1807 (2003)

    Article  Google Scholar 

  • Kunin, I.A.: Elastic Media with Microstructure 1. One-Dimensional Models. Springer, New York (1982)

    Book  MATH  Google Scholar 

  • Lemieux, M.A., Breton, P., Tremblay, A.M.S.: Unified approach to numerical transfer matrix methods for disordered systems: applications to mixed crystals and to elasticity percolation. J. Phys. Lett. 46, 1–7 (1985)

    Article  Google Scholar 

  • Lilliu, G., van Mier, J.G.M.: 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70, 927–941 (2003)

    Article  Google Scholar 

  • Liu, J.X., Deng, S.C., Zhang, J., Liang, N.G.: Lattice type of fracture model for concrete. Theor. Appl. Fract. Mech. 48(3), 269–284 (2007)

    Article  Google Scholar 

  • Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Monette, L., Anderson, M.P.: Elastic and fracture properties of the two-dimensional triangular and square lattices. Model. Simul. Mater. Sci. Eng. 2(1), 53–66 (1994)

    Article  Google Scholar 

  • Mustoe, G.G.W.: Generalized formulation of the discrete element method. Eng. Comput. 9(2), 181–190 (1992)

    Article  Google Scholar 

  • Nowacki, W.: The linear theory of micropolar elasticity. In: Nowacki, W., Olszak, W. (eds.) Micropolar Elasticity, pp. 1–43. Springer, New York (1974)

    Google Scholar 

  • Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  • Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7(1–2), 82–93 (1996)

    Article  Google Scholar 

  • Ray, P., Chakrabarti, B.K.: A microscopic approach to the statistical fracture analysis of disordered brittle solids. Solid State Commun. 53(5), 4770–479 (1985)

    Article  Google Scholar 

  • Sahimi, M., Arbabi, S.: Percolation and fracture in disordered solids and granular media: approach to a fixed point. Phys. Rev. Lett. 68(5), 608–11 (1992)

    Article  Google Scholar 

  • Sahimi, M., Goddard, J.D.: Elastic percolation models for cohesive mechanical failure in heterogeneous systems. Phys. Rev. B 33, 7848–7851 (1986)

    Article  Google Scholar 

  • Schlangen, E., Garboczi, E.J.: Fracture simulations of concrete using lattice models: computational aspects. Eng. Fract. Mech. 57, 319–332 (1997)

    Article  Google Scholar 

  • Walton, K.: The effective elastic modulus of a random packing of spheres. J. Mech. Phys. Solids 35, 213–226 (1987)

    Article  MATH  Google Scholar 

  • Zubelewicz, A., Bazant, Z.P.: Interface element modeling of fracture in aggregate composites. J. Eng. Mech. 113(11), 1619–1630 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 25220908. Part of the results was obtained by using the K computer at the RIKEN Advanced Institute for Computational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneo Hori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hori, M., Chen, J., Sument, S., Wijerathne, L., Ichimura, T. (2018). Effects of Local Spin on Overall Properties of Granule Materials. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics