Skip to main content

A Time-Incremental Eshelby-Based Homogenization Scheme for Viscoelastic Heterogeneous Materials

  • Chapter
  • First Online:
Book cover Micromechanics and Nanomechanics of Composite Solids

Abstract

A time-incremental Eshelby-based homogenization scheme for Maxwellian heterogeneous materials is proposed and discussed. This is based on the exact solution of the heterogeneous Eshelby ellipsoidal inclusion problem obtained in the time domain. In contrast with hereditary methods, the effective behavior and the evolution laws of the averaged stresses per phase are solved incrementally in the time domain without the need of inverse Laplace or Laplace–Carson transforms. This is made through a time differential equation to exactly solve a volume term in the integral equation that was generally approximated in previous internal variable methods. The present formulation works for any arbitrary anisotropic ellipsoidal Maxwellian inclusion embedded in an isotropic Maxwellian matrix without any other restrictive assumptions. In order to show the interest of the present approach, a Mori–Tanaka homogenization scheme is applied to two-phase composites using the developed strain rate concentration equations. The results are reported and discussed in comparisons with other existing methods, including hereditary approaches and more recent internal variable approaches, in order to show the efficiency of the present time-incremental homogenization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)

    Article  MathSciNet  Google Scholar 

  • Berbenni, S., Capolungo, L.: A Mori-Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: an affine extension. C. R. Mecanique 343, 95–106 (2015)

    Article  Google Scholar 

  • Berbenni, S., Dinzart, F., Sabar, H.: A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law. Mech. Mater. 81, 110–124 (2015)

    Article  Google Scholar 

  • Brassard, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco)plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012)

    Article  Google Scholar 

  • Brenner, R., Masson, R., Castelnau, O., Zaoui, A.: A “quasi-elastic” affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites. Eur. J. Mech. A. Solids 21, 943–960 (2002)

    Article  MATH  Google Scholar 

  • Brinson, L.C., Lin, W.S.: Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites. Compos. Struct. 41, 353–367 (1998)

    Article  Google Scholar 

  • Christensen, R.M.: Viscoelastic properties of heterogeneous media. J. Mech. Phys. Solids 17, 23–41 (1969)

    Article  Google Scholar 

  • Coulibaly, M., Sabar, H.: Micromechanical modeling of linear viscoelastic behavior of heterogeneous materials. Arch. Appl. Mech. 81, 345–359 (2011)

    Article  MATH  Google Scholar 

  • DeBotton, G., Tevet-Deree, L.: The response of a fiber-reinforced composite with a viscoelastic matrix phase. J. Compos. Mater. 38, 1255–1277 (2004)

    Article  Google Scholar 

  • Dyson, F.: The potentials of ellipsoids of variable densities. Q. J. Pure Appl. Math. 25, 259–288 (1891)

    MATH  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrers, N.: On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae and elliptic rings of variable densities. Q. J. Pure Appl. Math. 14, 1–22 (1877)

    MATH  Google Scholar 

  • Hashin, Z.: The inelastic inclusion problem. Int. J. Eng. Sci. 7, 11–36 (1969)

    Article  MATH  Google Scholar 

  • Kouddane, R., Molinari, A., Canova, G.R.: Self-consistent modelling of heterogeneous viscoelastic and elastoplastic materials. In: Teodosiu C., Raphanel J-.L., Sidoroff F. (eds.) Mecamat 91: Large Plastic Deformations, Fundamentals and Application to Metal Forming, pp. 129–141. Balkema, Rotterdam (1993)

    Google Scholar 

  • Kowalczyk-Gajewska, K., Petryk, H.: Sequential linearization method for viscous/elastic heterogeneous materials. Eur. J. Mech. A Solids 30, 650–664 (2011)

    Article  MATH  Google Scholar 

  • Kröner, E.: Zur plastischen Verformung des Vielkristalls. Acta Metall. 9, 155–161 (1961)

    Article  Google Scholar 

  • Kröner, E.: Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media. In: Weng G.J., Taya M., Abe H. (eds.) Micromechanics and Inhomogeneity. The Toshio Mura 65th Anniversary Volume, pp. 197–211. Springer, New York (1990)

    Chapter  Google Scholar 

  • Kunin, I.A.: Elastic media with microstructure II: three-dimensional models. In: Kröner E. (ed.) Springer Series in Solid-State Sciences 44. Springer, Berlin (1983)

    Google Scholar 

  • Lahellec, N., Suquet, P.: Effective behavior of linear viscoelastic composites: a time-integration approach. Int. J. Solids Struct. 44, 507–529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lahellec, N., Suquet, P.: On the effective behavior of non linear inelastic composites: I. Incremental variational principles. J. Mech. Phys. Solids 55, 1932–1963 (2007)

    Article  MATH  Google Scholar 

  • Lavergne, F., Sab, K., Sanahuja, J., Bornert, M., Toulemonde, C.: Homogenization schemes for aging linear viscoelastic matrix-inclusion composite materials with elongated inclusions. Int. J. Solids Struct. 80, 545–560 (2016)

    Article  Google Scholar 

  • Laws, N., McLaughlin, R.: Self-consistent estimates for the viscoelastic creep compliance of composite materials. Proc. R. Soc. Lond. A 359, 251–273 (1978)

    Article  MathSciNet  Google Scholar 

  • Levesque, M., Gilchrist, M.D., Bouleau, N., Derrien, K., Baptiste, D.: Numerical inversion of the Laplace-Carson transform applied to homogenization of randomly reinforced linear viscoelastic media. Comput. Mech. 40, 771–789 (2007)

    Article  MATH  Google Scholar 

  • Li, J., Weng, G.J.: Strain-rate sensitivity, relaxation behavior and complex moduli of a class of isotropic viscoplastic composites. ASME J. Eng. Mater. Tech. 116, 495–504 (1994)

    Article  Google Scholar 

  • Li, J., Weng, G.J.: A secant-viscosity approach to the time-dependent creep of an elastic-viscoplastic composite. J. Mech. Phys. Solids 45(7), 1069–1083 (1997)

    Article  MATH  Google Scholar 

  • Mandel, J.: Cours de Mécanique des Milieux Continus. Gauthiers-Villars, Paris (1966)

    MATH  Google Scholar 

  • Mareau, C., Berbenni, S.: An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method. Int. J. Plast. 64, 134–150 (2015)

    Article  Google Scholar 

  • Masson, R., Zaoui, A.: Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials. J. Mech. Phys. Solids 47, 1543–1568 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Masson, R., Brenner, R., Castelnau, O.: Incremental homogenization approach for ageing viscoelastic polycrystals. C. R. Mecanique 340, 378–386 (2012)

    Article  Google Scholar 

  • Mercier, S., Molinari, A.: Homogenization of elastic-viscoplastic heterogeneous materials: self-consistent and Mori-Tanaka schemes. Int. J. Plast. 25, 1024–1048 (2009)

    Article  MATH  Google Scholar 

  • Mercier, S., Molinari, A., Berbenni, S., Berveiller, M.: Comparison of different homogenization approaches for elastic-viscoplastic materials. Model. Simul. Mater. Sci. Eng. 20, 024004 (2012)

    Article  Google Scholar 

  • Molinari, A.: Averaging models for heterogeneous viscoplastic and elastic-viscoplastic materials. ASME J. Eng. Mater. Tech. 124, 62–70 (2002)

    Article  Google Scholar 

  • Molinari, A., Ahzi, S., Kouddane, R.: On the self-consistent modelling of elastic-plastic behavior of polycrystals. Mech. Mater. 26, 43–62 (1997)

    Article  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Mura, T.: Micromechanics of Defects in Solids. Kluwer Academic, Dordrecht (1987)

    Book  MATH  Google Scholar 

  • Paquin, A., Sabar, H., Berveiller, M.: Integral formulation and self-consistent modelling of elasto-viscoplastic behavior of heterogeneous materials. Arch. Appl. Mech. 69, 14–35 (1999)

    Article  MATH  Google Scholar 

  • Pierard, O., Doghri, I.: An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int. J. Plast. 22, 131–157 (2006)

    Article  MATH  Google Scholar 

  • Ponte Castañeda, P., Willis, J.R.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43, 1919–1951 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Ricaud, J.M., Masson, R.: Effective properties of linear viscoelastic heterogeneous media: internal variables formulation and extension to ageing behaviours. Int. J. Solids Struct. 46, 1599–1606 (2009)

    Article  MATH  Google Scholar 

  • Rougier, Y., Stolz, C., Zaoui, A.: Representation spectrale en viscoelasticite lineaire des materiaux heterogenes. C. R. Acad. Sci. Paris Ser. II 316, 1517–1522 (1993)

    MATH  Google Scholar 

  • Rougier, Y., Stolz, C., Zaoui, A.: Self-consistent modelling of elastic-viscoplastic polycrystals. C. R. Acad. Sci. Paris Ser. IIb 318, 145–151 (1994)

    MATH  Google Scholar 

  • Sabar, H., Berveiller, M., Favier, V., Berbenni, S.: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 39, 3257–3276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Sanahuja, J.: Effective behavior of aging linear viscoelastic composites: homogenization approach. Int. J. Solids Struct. 50, 2846–2856 (2013)

    Article  Google Scholar 

  • Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E., Zaoui A. (eds.) Homogenization Techniques for Composite Media, pp. 193–278. Springer, Berlin (1987)

    Chapter  Google Scholar 

  • Turner, P.A., Tomé, C.N.: Self-consistent modeling of visco-elastic polycrystals: application to irradiation creep and growth. J. Mech. Phys. Solids 41(7), 1191–1211 (1993)

    Article  MATH  Google Scholar 

  • Walpole, L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981)

    Article  MATH  Google Scholar 

  • Wang, Y.M., Weng, G.J.: The influence of inclusion shape on the overall viscoelastic behavior of composites. ASME J. Appl. Mech. 59(3), 510–518 (1992)

    Article  MATH  Google Scholar 

  • Weng, G.J.: Self-consistent determination of time-dependent behavior of metals. ASME J. Appl. Mech. 48, 41–46 (1981)

    Article  MATH  Google Scholar 

  • Weng, G.J.: Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22(7), 845–856 (1984)

    Article  MATH  Google Scholar 

  • Weng, G.J.: A self-consistent relation for the time-dependent creep of polycrystals. Int. J. Plast. 9, 181–198 (1993)

    Article  MATH  Google Scholar 

  • Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composite which accounts for inclusion distribution. J. Mech. Phys. Solids 49, 2765–2788 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Berbenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Berbenni, S., Sabar, H. (2018). A Time-Incremental Eshelby-Based Homogenization Scheme for Viscoelastic Heterogeneous Materials. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics