Advanced Meso-Scale Modelling to Study the Effective Thermo-Mechanical Parameter in Solid Geomaterial

  • F. WuttkeEmail author
  • A. S. Sattari
  • Z. H. Rizvi
  • H. B. Motra
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The effects of coupled thermo-mechanical processes under consideration of micro-fracturing of the solid geomaterial on mechanical and thermal properties of geomaterials are investigated and subsequently simulated using advance Lattice Element Method (LEM). As a result of that extension, the alteration of effective parameter due to structural changes become numerically understandable. Hence, the simulation of the coupled processes on the meso-scale helps to develop and validate reliable identification method for real cases. The obtained results make it obvious that LEM has a large potential for fracture problems in geomaterials.


Energy Release Rate Effective Thermal Conductivity Linear Elastic Fracture Mechanics Voronoi Cell Lattice Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research project is financially supported by Federal state funding at Kiel University and research grant “DuoFill” provided by the Federal Ministry for Economic Affairs and Energy, Germany (BMWi/ZIM KF3067303KI3).


  1. Bahrami M, Culham JR, Yovanovich MM, Schneider GE (2006a) Review of thermal joint resistance models for non-conforming rough surfaces in a vacuum. Appl Mech Rev 59:1–12CrossRefGoogle Scholar
  2. Bahrami M, Yovanovich MM, Culham JR (2004) Thermal joint resistances of non-conforming rough surfaces with gas-filled gaps. J Thermophys Heat Transf 18:326–332CrossRefGoogle Scholar
  3. Bahrami M, Yovanovich MM, Culham JR (2006b) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701CrossRefzbMATHGoogle Scholar
  4. Batchelor FGK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc Roy Soc Lond A 355:313–333CrossRefGoogle Scholar
  5. Caballero A, Carol I, Lopez CM (2006) New results in 3D meso mechanical analysis of concerete specimen using interface elements. In: Computational modelling of concrete structure, pp 43-52. Taylor and Francis, LondonGoogle Scholar
  6. Cheng GJ, Yu AB, Zulli P (1999) Evaluation of effective thermal conductivity from the structure of a packed bed. Chem Eng Sci 54:4199–4209CrossRefGoogle Scholar
  7. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens T.J. (ed.) Rock physics & phase relations: a handbook of physical constants. Americ. Geophysical UnionGoogle Scholar
  8. D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Gran Matter 4:77–90CrossRefzbMATHGoogle Scholar
  9. Donze FV, Magnier SA, Daudeville L, Mariotti C (1999) Numerical study of compressive behaviour of concrete at high strain rates. J Eng Mech 125:1154–1163CrossRefGoogle Scholar
  10. Esteban L, Pimienta L, Sarout J, Piane CP, Haffen S, Geraud Y, Timms NE (2015) Study cases of thermal conductivity prediction from p-wave velocity and porosity. Geothermics 53:255–269CrossRefGoogle Scholar
  11. Gegenhuber N, Schön JH (2012) New approaches for the relationship between compressional wave velocity and thermal conductivity. J Appl Geophys 76:50–55CrossRefGoogle Scholar
  12. Kuipers J, van Duin K, van Beckum F, van Swaaij W (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47:1913–1924CrossRefGoogle Scholar
  13. Lawn BR (1993) Fracture of Brittle Solids, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  14. Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941CrossRefGoogle Scholar
  15. Moukarzel C, Herrmann HJ (1992) A vectorizable random lattice. J Stat Phys 68:911–923MathSciNetCrossRefzbMATHGoogle Scholar
  16. Rizvi ZH, Sattari AS, Wuttke F (2016) Numerical analysis of heat conduction in granular geomaterial using lattice elements. In: 1st international conference on energy geotechnics, Kiel, GermanyGoogle Scholar
  17. Schön JH (2011) Physical properties of rocks: a workbook. Elsevier publication, OxfordGoogle Scholar
  18. Tavman S, Tavman IH (1998) Measurement of effective thermal conductivity of wheat as a function of moisture contact. Int Commun J HeatMass Transf 25:733–741CrossRefGoogle Scholar
  19. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of 2D fluidized bed. Powder Technol 77:79–87CrossRefGoogle Scholar
  20. Woodside W, Messmer JH (1961) Thermal conductivity of porous media I unconsolidated sands. J Appl Phys 32:1688–1698CrossRefGoogle Scholar
  21. Wang YH, Leung SC (2008) A particulate scale investigation of cemented sand behaviour. Can Geotech 45:29–44CrossRefGoogle Scholar
  22. Wong JKW, Soga K, Xu X, Delenne JY (2015) Modelling fracturing process of geomaterial using Lattice Element Method. In: Geomechanics from micro to macro, pp. 417–422Google Scholar
  23. Yun TS, Matthew Evans T (2010) Three-dimensional random network model for thermal conductivity in particulate materials. Comput Geotech 37:991–998CrossRefGoogle Scholar
  24. Zhang HW, Zhou Q, Zheng YG (2011a) A multi-scale method for thermal conduction simulation in granular materials. Comput Mat Sci 50:2750–2758CrossRefGoogle Scholar
  25. Zhang HW, Zhou Q, Xing HL, Muhlhaus H (2011b) A DEM study on the effective thermal conductivity of granular assemblies. Powder Technol 205:172–183CrossRefGoogle Scholar
  26. Zhou Q, Zhang HW, Zheng YG (2012) A homogenization technique is proposed to simulate the thermal conduction of periodic granular materials in vacuum. Adv Powder Technol 23:104–114CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • F. Wuttke
    • 1
    Email author
  • A. S. Sattari
    • 1
  • Z. H. Rizvi
    • 1
  • H. B. Motra
    • 1
  1. 1.Institute of GeosciencesUniversity of KielKielGermany

Personalised recommendations