Skip to main content

Ranking with Ties of OWL Ontology Reasoners Based on Learned Performances

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015)

Abstract

Over the last decade, several ontology reasoners have been proposed to overcome the computational complexity of inference tasks on expressive ontology languages such as OWL 2 DL. Nevertheless, it is well-accepted that there is no outstanding reasoner that can outperform in all input ontologies. Thus, deciding the most suitable reasoner for an ontology based application is still a time and effort consuming task. In this paper, we suggest to develop a new system to provide user support when looking for guidance over ontology reasoners. At first, we will be looking at automatically predict a single reasoner empirical performances, in particular its robustness and efficiency, over any given ontology. Later, we aim at ranking a set of candidate reasoners in a most preferred order by taking into account information regarding their predicted performances. We conducted extensive experiments covering over 2500 well selected real-world ontologies and six state-of-the-art of the most performing reasoners. Our primary prediction and ranking results are encouraging and witnessing the potential benefits of our approach.

This work is an extension of our previous publication at the 7th International Conference on Knowledge Engineering and Ontology Development KEOD 2015 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It’s important to notice that “DL classification” stands for a reasoning task aiming at inferring the subsumption relations between the classes and the properties in given ontology, however the “ML classification” denotes the process of training a predictive model from a labelled dataset.

  2. 2.

    It’s important to notice that “DL classification” designs a reasoning task aiming at inferring the class and property subsumption relation in a given ontology, however the “ML classification” denotes the process of training a predictive model from a labeled dataset.

  3. 3.

    For further details about OWL 2 profiles, the reader is kindly referred to http://www.w3.org/TR/owl2-profiles/.

  4. 4.

    The ORE Framework is available at https://github.com/andreas-steigmiller/ore-2014-competition-framework/.

  5. 5.

    The ORE corpus is available at http://zenodo.org/record/10791.

  6. 6.

    The size corresponds to the number of the logical axioms.

  7. 7.

    All ORE’2014 reasoners are available at https://zenodo.org/record/11145/.

  8. 8.

    Results of our experiments are available at https://github.com/PhdStudent2015/Classification_Results_2016.

  9. 9.

    The Weka API is available at www.cs.waikato.ac.nz/ml/weka/downloading.html.

  10. 10.

    RLF will be used with a ranking threshold equal to 0.01.

  11. 11.

    Accuracy places more weight on the majority class(es) than the minority one(s). Consequently, high accuracy rates would be reported, even if the predictive model is not necessarily a good one.

  12. 12.

    The alternatives are the objects, or elements to be ranked.

  13. 13.

    However, the reasoner results correctness may be approved by a different checking method.

  14. 14.

    We recall that each of the buckets \(\mathcal {B}_C\prec \mathcal {B}_U \prec \mathcal {B}_T \prec \mathcal {B}_H\) corresponds to a predictable label \(\{C, U, T, H\}\) computed by the robustness classification model.

  15. 15.

    It is to be noted that when \(K=1\), P@1 is equal to AP@1.

References

  1. Abbott, D.: Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst, 1st edn. Wiley, Hoboken (2014)

    Google Scholar 

  2. Alaya, N., Ben Yahia, S., Lamolle, M.: Predicting the empirical robustness of the ontology reasoners based on machine learning techniques. In: Proceedings of the 7th International Conference on Knowledge Engineering and Ontology Development KEOD 2015, Lisbon, Portugal, pp. 61–73 (2015)

    Google Scholar 

  3. Alaya, N., Lamolle, M., Ben Yahia, S.: Towards unveiling the ontology key features altering reasoner performances. Technical report, IUT of Montreuil, France (2015). http://arxiv.org/abs/1509.08717

  4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory Implementation and Applications, 2nd edn. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  5. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

    Google Scholar 

  6. Caruso, J.C., Cliff, N.: Empirical size, coverage, and power of confidence intervals for Spearman’s rho. J. Educ. Psychol. Meas. 57, 637–654 (1997)

    Article  Google Scholar 

  7. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  8. Dumontier, M., Glimm, B., Gonçalves, R.S., Horridge, M., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Stamou, G.B., Stoilos, G. (eds.): Informal Proceedings of the 4th International Workshop on OWL Reasoner Evaluation (ORE-2015), Athens, Greece, vol. 1387. CEUR-WS.org (2015)

    Google Scholar 

  9. Emond, E.J., Mason, D.: A new rank correlation coefficient with application to consensus ranking problem. J. Multicriteria Decis. Anal. 11, 17–28 (2002)

    Article  MATH  Google Scholar 

  10. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discret. Math. 20, 628–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garcia, S., Luengo, J., Saez, J., Lopez, V., Herrera, F.: A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25, 734–750 (2013)

    Article  Google Scholar 

  12. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison of description logic reasoners. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 654–667. Springer, Heidelberg (2006). doi:10.1007/11926078_47

    Chapter  Google Scholar 

  13. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gonçalves, R.S., Matentzoglu, N., Parsia, B., Sattler, U.: The empirical robustness of description logic classification. In: Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, pp. 197–208 (2013)

    Google Scholar 

  15. Gonçalves, R.S., Bail, S., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Glimm, B., Kazakov, Y.: Owl reasoner evaluation (ORE) workshop 2013 results: short report. In: ORE, pp. 1–18 (2013)

    Google Scholar 

  16. Gonçalves, R.S., Parsia, B., Sattler, U.: Performance heterogeneity and approximate reasoning in description logic ontologies. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 82–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_6

    Chapter  Google Scholar 

  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  18. Hu, B., Dong, W.: A study on cost behaviors of binary classification measures in class-imbalanced problems. CoRR abs/1403.7100 (2014)

    Google Scholar 

  19. Kang, Y.-B., Krishnaswamy, S., Li, Y.-F.: R\(_2\)O\(_2\): an efficient ranking-based reasoner for OWL ontologies. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 322–338. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25007-6_19

    Chapter  Google Scholar 

  20. Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: Predicting reasoning performance using ontology metrics. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 198–214. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_13

    Chapter  Google Scholar 

  21. Kang, Y.B., Li, Y.F., Krishnaswamy, S.: How long will it take? Accurate prediction of ontology reasoning performance. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 80–86 (2014)

    Google Scholar 

  22. Lee, M., Matentzoglu, N., Sattler, U., Parsia, B.: Verifying reasoner correctness - a justication based method. In: Informal Proceedings of the 4th International Workshop on OWL Reasoner Evaluation (ORE-2015), pp. 46–52 (2015)

    Google Scholar 

  23. LePendu, P., Noy, N.F., Jonquet, C., Alexander, P.R., Shah, N.H., Musen, M.A.: Optimize first, buy later: analyzing metrics to ramp-up very large knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 486–501. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0_31

    Chapter  Google Scholar 

  24. Matentzoglu, N., Leo, J., Hudhra, V., Sattler, U., Parsia, B.: A survey of current, stand-alone OWL reasoners. In: Proceedings of the 4th International Workshop on OWL Reasoner Evaluation, pp. 68–79 (2015)

    Google Scholar 

  25. Mikolà\({\tilde{\rm s}}\)ek, V.: Dependability and robustness: state of the art and challenges. In: Proceedings of the First International Workshop on Software Technologies for Future Dependable Distributed Systems (STFSSD), pp. 25–31 (2009)

    Google Scholar 

  26. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation, October 2009. http://www.w3.org/TR/owl2-overview/

  27. Pandit, V., Kenkre, S., Khan, A.: On discovering bucket orders from preference data. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, Arizona, USA, pp. 872–883 (2011)

    Google Scholar 

  28. Prudêncio, R.B.C., de Souto, M.C.P., Ludermir, T.B.: Selecting machine learning algorithms using the ranking meta-learning approach. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds.) Meta-Learning in Computational Intelligence. SCI, vol. 358, pp. 225–243. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  30. Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw Hill Higher Education, New York (1991)

    Google Scholar 

  31. Sazonau, V., Sattler, U., Brown, G.: Predicting performance of OWL reasoners: locally or globally? In: Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (2014)

    Google Scholar 

  32. Weithöner, T., Liebig, T., Luther, M., Böhm, S., Henke, F., Noppens, O.: Real-world reasoning with OWL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 296–310. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72667-8_22

    Chapter  Google Scholar 

  33. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourhène Alaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Alaya, N., Yahia, S.B., Lamolle, M. (2016). Ranking with Ties of OWL Ontology Reasoners Based on Learned Performances. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2015. Communications in Computer and Information Science, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-319-52758-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52758-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52757-4

  • Online ISBN: 978-3-319-52758-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics