Skip to main content

A Visual Similarity Metric for Ontology Alignment

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015)

Abstract

Ontology alignment is the process where two different ontologies that usually describe similar domains are ‘aligned’, i.e. a set of correspondences between their entities, regarding semantic equivalence, is determined. In order to identify these correspondences several methods have been proposed in literature. The most common features that these methods employ are string-, lexical-, structure- and semantic-based features for which several approaches have been developed. However, what hasn’t been investigated is the usage of visual-based features for determining entity similarity. Nowadays the existence of several resources that map lexical concepts onto images allows for exploiting visual features for this purpose. In this paper, a novel method, defining a visual-based similarity metric for ontology matching, is presented. Each ontological entity is associated with sets of images. State of the art visual feature extraction, clustering and indexing for computing the visual-based similarity between entities is employed. An adaptation of a Wordnet-based matching algorithm to exploit the visual similarity is also proposed. The proposed visual similarity approach is compared with standard metrics and demonstrates promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CIDOC-CRM, http://www.cidoc-crm.org.

  2. 2.

    Europeana Data Model, http://labs.europeana.eu.

  3. 3.

    OAEI, http://oaei.ontologymatching.org.

  4. 4.

    ImageNet, http://www.image-net.org/.

  5. 5.

    Flickr, https://www.flickr.com/.

  6. 6.

    Yahoo search, https://images.search.yahoo.com.

  7. 7.

    OAEI 2014, http://oaei.ontologymatching.org/2014.

  8. 8.

    ImageNet visual features download,

    http://image-net.org/download-features.

References

  1. Chatfield, K., Zisserman, A.: VISOR: towards on-the-fly large-scale object category retrieval. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7725, pp. 432–446. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37444-9_34

    Chapter  Google Scholar 

  2. Chen, X., Xia, W., Jiménez-Ruiz, E., Cross, V.: Extending an ontology alignment system with bioportal: a preliminary analysis. In: International Semantic Web Conference (ISWC) (2014)

    Google Scholar 

  3. Cruz, I.F., Antonelli, F.P., Stroe, C.: Efficient selection of mappings and automatic quality-driven combination of matching methods. In: ISWC International Workshop on Ontology Matching (OM) CEUR Workshop Proceedings, vol. 551, pp. 49–60. Citeseer (2009)

    Google Scholar 

  4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 385–403. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Dragisic, Z., Eckert, K., Euzenat, J., Faria, D., Ferrara, A., Granada, R., Ivanova, V., Jimenez-Ruiz, E., Kempf, A., Lambrix, P., et al.: Results of the ontology alignment evaluation initiative 2014. In: International Workshop on Ontology Matching, pp. 61–104 (2014)

    Google Scholar 

  6. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3_48

    Chapter  Google Scholar 

  7. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Automatic background knowledge selection for matching biomedical ontologies. PLoS ONE 9(11), e111226 (2014)

    Article  Google Scholar 

  8. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The agreementmakerlight ontology matching system. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41030-7_38

    Chapter  Google Scholar 

  9. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25956-5_5

    Chapter  Google Scholar 

  10. Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity measures. In: Seventh IEEE/ACIS International Conference on Computer and Information Science, ICIS 2008, pp. 340–346. IEEE (2008)

    Google Scholar 

  11. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 235–251 (2009)

    Article  Google Scholar 

  12. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)

    Google Scholar 

  13. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. knowl. Eng. Rev. 18(01), 1–31 (2003)

    Article  MATH  Google Scholar 

  14. Kirsten, T., Gross, A., Hartung, M., Rahm, E.: GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution. J. Biomed. Semant. 2(6), 1–24 (2011)

    Google Scholar 

  15. Kuhn, H.W.: The hungarian method for the assignment problem. Nav. Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, F., Sandkuhl, K.: A survey of exploiting wordnet in ontology matching. In: Bramer, M. (ed.) IFIP AI 2008. ITIFIP, vol. 276, pp. 341–350. Springer, Heidelberg (2008). doi:10.1007/978-0-387-09695-7_33

    Chapter  Google Scholar 

  17. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. VLDB 1, 49–58 (2001)

    Google Scholar 

  18. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR, pp. 483–493 (2000)

    Google Scholar 

  19. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: 2002 Proceedings of 18th International Conference on Data Engineering, pp. 117–128. IEEE (2002)

    Google Scholar 

  20. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  21. Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data translation. In: VLDB 1998, pp. 24–27. Citeseer (1998)

    Google Scholar 

  22. Nezhadi, A.H., Shadgar, B., Osareh, A.: Ontology alignment using machine learning techniques. Int. J. Comput. Sci. Inf. Technol. 3(2), 139 (2011)

    Google Scholar 

  23. Ngo, D.H., Bellahsene, Z.: YAM++: a multi-strategy based approach for ontology matching task. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 421–425. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33876-2_38

    Chapter  Google Scholar 

  24. Pesquita, C., Faria, D., Santos, E., Neefs, J.-M., Couto, F.M.: Towards visualizing the alignment of large biomedical ontologies. In: Galhardas, H., Rahm, E. (eds.) DILS 2014. LNCS, vol. 8574, pp. 104–111. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08590-6_10

    Google Scholar 

  25. Sabou, M., d’Aquin, M., Motta, E.: Using the semantic web as background knowledge for ontology mapping. In: OM 2006 Proceedings of the International Workshop on Ontology Matching (2006)

    Google Scholar 

  26. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005). doi:10.1007/11603412_5

    Chapter  Google Scholar 

  27. Spyromitros-Xioufis, E., Papadopoulos, S., Kompatsiaris, I., Tsoumakas, G., Vlahavas, I.: A comprehensive study over VLAD and product quantization in large-scale image retrieval. IEEE Trans. Multimed. 16(6), 1713–1728 (2014)

    Article  Google Scholar 

  28. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005). doi:10.1007/11574620_45

    Chapter  Google Scholar 

  29. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported by MULTISENSOR (contract no. FP7-610411) and KRISTINA (contract no. H2020-645012) projects, partially funded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Doulaverakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Doulaverakis, C., Vrochidis, S., Kompatsiaris, I. (2016). A Visual Similarity Metric for Ontology Alignment. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2015. Communications in Computer and Information Science, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-319-52758-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52758-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52757-4

  • Online ISBN: 978-3-319-52758-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics