Skip to main content

Weighted Norm Inequalities of (1, q)-Type for Integral and Fractional Maximal Operators

  • Chapter
  • First Online:
Harmonic Analysis, Partial Differential Equations and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We study weighted norm inequalities of (1, q)- type for 0 < q < 1,

$$\displaystyle{\Vert \mathbf{G}\nu \Vert _{L^{q}(\Omega,d\sigma )} \leq C\,\Vert \nu \Vert,\quad \text{for all positive measures}\,\nu \text{ in }\Omega,}$$

along with their weak-type counterparts, where \(\Vert \nu \Vert =\nu (\Omega )\), and G is an integral operator with nonnegative kernel,

$$\displaystyle{\mathbf{G}\nu (x) =\int _{\Omega }G(x,y)d\nu (y).}$$

These problems are motivated by sublinear elliptic equations in a domain \(\Omega \subset \mathbb{R}^{n}\) with non-trivial Green’s function G(x, y) associated with the Laplacian, fractional Laplacian, or more general elliptic operator. We also treat fractional maximal operators M α (0 ≤ α < n) on \(\mathbb{R}^{n}\), and characterize strong- and weak-type (1, q)-inequalities for M α and more general maximal operators, as well as (1, q)-Carleson measure inequalities for Poisson integrals.

Dedicated to Richard L. Wheeden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory. Grundlehren der math. Wissenschaften, vol. 314 (Springer, Berlin, Heidelberg, New York, 1996)

    Google Scholar 

  2. A. Ancona, First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains. J. Anal. Math. 72, 45–92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ancona, Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators. Nagoya Math. J. 165, 123–158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Brezis, S. Kamin, Sublinear elliptic equation on \(\mathbb{R}^{n}\). Manuscr. Math. 74, 87–106 (1992)

    Article  MATH  Google Scholar 

  5. H. Brezis, L. Oswald, Remarks on sublinear elliptic equations. Nonlin. Anal.: Theory Methods Appl. 10, 55–64 (1986)

    Google Scholar 

  6. D.T. Cao, I.E. Verbitsky, Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms. Calc. Var. PDE 52, 529–546 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. D.T. Cao, I.E. Verbitsky, Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations. Nonlin. Anal. Ser. A: Theory Methods Appl. 146, 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.T. Cao, I.E. Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type. J. Funct. Anal. 272, 112–165 (2017) (published online, http://dx.doi.org/10.1016/j.jfa.2016.10.010)

  9. B. Fuglede, On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Gagliardo, On integral transformations with positive kernel. Proc. Am. Math. Soc. 16, 429–434 (1965)

    MATH  Google Scholar 

  11. A. Grigor’yan, I.E. Verbitsky, Pointwise estimates of solutions to semilinear elliptic equations and inequalities. J. d’Analyse Math. arXiv:1511.03188 (to appear)

    Google Scholar 

  12. N.S. Landkof, Foundations of Modern Potential Theory. Grundlehren der math. Wissenschaften, vol. 180 (Springer, New York, Heidelberg, 1972)

    Google Scholar 

  13. M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures (Walter de Gruyter, Berlin, Boston, 2014)

    MATH  Google Scholar 

  14. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espaces L p, in Astérisque, vol. 11 (Soc. Math., Paris, 1974)

    MATH  Google Scholar 

  15. V. Maz’ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations. Grundlehren der math. Wissenschaften, 2nd Augmented Edition, vol. 342 (Springer, Berlin, 2011)

    Google Scholar 

  16. S. Quinn, I.E. Verbitsky, A sublinear version of Schur’s lemma and elliptic PDE. preprint (2016)

    Google Scholar 

  17. A.L. Rozin, Singular integrals and maximal functions in the space L 1. Bull. Georgian Acad. Sci. 87, 29–32 (1977) (in Russian)

    MathSciNet  MATH  Google Scholar 

  18. E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75, 1–11 (1982)

    MathSciNet  MATH  Google Scholar 

  19. G. Sinnamon, Schur’s lemma and best constants in weighted norm inequalities. Le Matematiche 57, 165–204 (2005)

    MathSciNet  Google Scholar 

  20. G. Sinnamon, V.D. Stepanov, The weighted Hardy inequality: new proofs and the case p = 1. J. Lond. Math. Soc. (2) 54, 89–101 (1996)

    Google Scholar 

  21. P. Szeptycki, Notes on integral transformations. Dissert. Math. 231 (1984), pp. 1–52

    MathSciNet  MATH  Google Scholar 

  22. I.E. Verbitsky, Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through L p, . Int. Equ. Oper. Theory 15, 121–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. I.V. Videnskii, On an analogue of Carleson measures. Soviet Math. Dokl. 37, 186–190 (1988)

    MathSciNet  Google Scholar 

  24. R.L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function. Studia Math. 107, 258–272 (1993)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Verbitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Quinn, S., Verbitsky, I.E. (2017). Weighted Norm Inequalities of (1, q)-Type for Integral and Fractional Maximal Operators. In: Chanillo, S., Franchi, B., Lu, G., Perez, C., Sawyer, E. (eds) Harmonic Analysis, Partial Differential Equations and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-52742-0_12

Download citation

Publish with us

Policies and ethics