Skip to main content

Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells

  • Chapter
  • First Online:
Organic-Inorganic Composite Polymer Electrolyte Membranes

Abstract

Recently, the demands of modern society on energy have become enormous. This consequently rises up significant concerns on the ecological and environmentally friendly energy conversion to power up applications from portable devices up to stationary power plant. Direct methanol fuel cell (DMFC) is one of the zero-pollution energy supply fuel cells that has gained much attention for their high efficiency and high power density yet compact in size. In order to ensure a continuously high performance power output from DMFC, a promising proton exchange membrane (PEM) with high proton conductivity and low methanol permeability is desirable. As one of the most promising and versatile fabrication methods for one-dimensional microstructure nanomaterials composed of organic and inorganic components prepared as randomly arranged continuous nanofibrous mats, electrospinning has been widely investigated to fabricate PEM applied in DMFC because of their dimensional, directional, and compositional flexibility. In this chapter, the application of electrospun nanofibers from organic, inorganic, and composite organic–inorganic is reviewed in details. Particular progresses with the use of electrospun nanofibers to improve fuel cell performance in terms of power density, ionic conductivity, interfacial resistance, and chemical stability, as well as mechanical strength are emphasized and discussed. The meaningful critical review could contribute to further enhance the development and evolution of fuel cells as one of the advanced energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DMFC:

Direct methanol fuel cell

PEM:

Proton exchange membrane

MEA:

Membrane electrode essembly

OCV:

Open circuit voltage

CO:

Carbon monoxide

PVA:

Poly(vinyl alcohol)

SiO2 :

.

SPEEK:

Sulfonated poly(ether ether ketone)

TPA:

Tungstophosphoric acid

MCM-41:

Mesoporous material composite

OMB:

Sulfonated mesoporous benzene-silica

BI:

Benzimidazole

TiO2 :

Titanium dioxide

ZrO2 :

Zirconium dioxide

MMT:

Montmorillonite

GO:

Graphene oxide

SPTA:

Sulfonated polytriazole

SPPO:

Sulfonated polyphenylene oxide

PAA:

Perfluorosulfonc acid polymer

References

  1. Apanel G, Johnson E (2004) Direct methanol fuel cells—ready to go commercial. Fuel Cells Bull 2004:12–17

    Article  Google Scholar 

  2. Ahmadian-Alam L, Kheirmand M, Mahdavi H (2016) Preparation, characterization and properties of PVDF-g-PAMPS/PMMA-co-PAMPS/silica nanoparticle as a new proton exchange nanocomposite membrane. Chem Eng J 284:1035–1048

    Article  CAS  Google Scholar 

  3. Ayyaru S, Dharmalingam S (2011) Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour Technol 102:11167–11171

    Article  CAS  Google Scholar 

  4. Banerjee S, Kar KK (2016) Superior water retention, ionic conductivity and thermal stability of sulfonated poly ether ether ketone/polypyrrole/aluminum phosphate nanocomposite based polymer electrolyte membrane. J Environ Chem Eng 4:299–310

    Article  CAS  Google Scholar 

  5. Chiou B Sen, Yee E, Wood D, Shey J, Glenn G, Orts W (2006) Effects of processing conditions on nanoclay dispersion in starch-clay nanocomposites. Cereal Chem 83:300–305

    Article  CAS  Google Scholar 

  6. Cho E-B, Luu DX, Kim D (2010) Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly(ether ether ketone) composite membranes for fuel cell application. J Membr Sci 351:58–64

    Article  CAS  Google Scholar 

  7. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333

    Article  CAS  Google Scholar 

  8. Dicks AL (2012) Comprehensive renewable energy. In: Comprehensive renewable energy. Elsevier, Amsterdam, pp 203–245

    Google Scholar 

  9. Elabd YA, Napadensky E, Sloan JM, Crawford DM, Walker CW (2003) Triblock copolymer ionomer membranes. J Membr Sci 217:227–242

    Article  CAS  Google Scholar 

  10. Fei S-T, Wood RM, Lee DK, Stone DA, Chang H-L, Allcock HR (2008) Inorganic–organic hybrid polymers with pendent sulfonated cyclic phosphazene side groups as potential proton conductive materials for direct methanol fuel cells. J Membr Sci 320:206–214

    Article  CAS  Google Scholar 

  11. Fu R-Q, Julius D, Hong L, Lee J-Y (2008) PPO-based acid-base polymer blend membranes for direct methanol fuel cells. J Membr Sci 322:331–338

    Article  CAS  Google Scholar 

  12. Hashemifard SA, Ismail AF, Matsuura T (2011) Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chem Eng J 170:316–325

    Article  CAS  Google Scholar 

  13. Ilbeygi H, Mayahi A, Ismail AF, Nasef MM, Jaafar J, Ghasemi M, Matsuura T, Zaidi SMJ (2014) Transport properties of SPEEK nanocomposite proton conducting membranes: optimization of additives content by response surface methodology. J Taiwan Inst Chem Eng 45:2265–2279

    Article  CAS  Google Scholar 

  14. Baptista AC, Martins JI, Fortunato E, Martins R, Borges JP, Ferreira I (2011) Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosens Bioelectron 26:2742–2745

    Article  CAS  Google Scholar 

  15. Battirola LC, Schneider JF, Torriani ÍCL, Tremiliosi-Filho G, Rodrigues-Filho UP (2013) Improvement on direct ethanol fuel cell performance by using doped-Nafion® 117 membranes with Pt and Pt–Ru nanoparticles. Int J Hydrogen Energy 38:12060–12068

    Article  CAS  Google Scholar 

  16. Yu DM, Yoon S, Kim T-H, Lee JY, Lee J, Hong YT (2013) Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. J Membr Sci 446:212–219

    Article  CAS  Google Scholar 

  17. Hasani-Sadrabadi MM, Shabani I, Soleimani M, Moaddel H (2011) Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. J Power Sour 196:4599–4603

    Article  CAS  Google Scholar 

  18. Jin J, Hao R, He X, Li G (2015) Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy 40:14421–14427

    Article  CAS  Google Scholar 

  19. Kim JM, Joh H-I, Jo SM, Ahn DJ, Ha HY, Hong S-A, Kim S-K (2010) Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation. Electrochim Acta 55:4827–4835

    Article  CAS  Google Scholar 

  20. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335

    Article  CAS  Google Scholar 

  21. Liu HY, Liu LL, Yang CL, Li ZH, Xiao QZ, Lei GT, Ding YH (2014) A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries. Electrochim Acta 121:328–336

    Article  CAS  Google Scholar 

  22. Chen Y, Guo R, Lee CH, Lee M, McGrath JE (2012) Partly fluorinated poly(arylene ether ketone sulfone) hydrophilic–hydrophobic multiblock copolymers for fuel cell membranes. Int J Hydrogen Energy 37:6132–6139

    Article  CAS  Google Scholar 

  23. Jia C, Liu J, Yan C (2012) A multilayered membrane for vanadium redox flow battery. J Power Sources 203:190–194

    Article  CAS  Google Scholar 

  24. Kang NR, Lee SY, Shin DW, Hwang DS, Lee KH, Cho DH, Kim JH, Lee YM (2016) Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes. J Power Sources 307:834–843

    Article  CAS  Google Scholar 

  25. Yuan W, Zhou B, Deng J, Tang Y, Zhang Z, Li Z (2014) Overview on the developments of vapor-feed direct methanol fuel cells. Int J Hydrogen Energy 39:6689–6704

    Article  CAS  Google Scholar 

  26. Ferreira SLC, Bruns RE, da Silva EGP, Dos Santos WNL, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158:2–14

    Article  CAS  Google Scholar 

  27. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63

    Article  Google Scholar 

  28. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  CAS  Google Scholar 

  29. Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975

    Article  CAS  Google Scholar 

  30. Jaafar J, Ismail AF, Matsuura T (2009) Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J Membr Sci 345:119–127

    Article  CAS  Google Scholar 

  31. Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874

    Article  CAS  Google Scholar 

  32. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  CAS  Google Scholar 

  33. Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51:1654–1662

    Article  CAS  Google Scholar 

  34. Peponi L, Puglia D, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Rep 85:1–46

    Article  Google Scholar 

  35. Wang SH, Lin HL (2014) Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells. J Power Sour

    Google Scholar 

  36. Won J-H, Lee H-J, Lim J-M, Kim J-H, Hong YT, Lee S-Y (2014) Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology. J Membr Sci 450:235–241

    Article  CAS  Google Scholar 

  37. Rezaei M, Ismail AF, Bakeri G, Hashemifard SA, Matsuura T (2015) Effect of general montmorillonite and Cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chem Eng J 260:875–885

    Article  CAS  Google Scholar 

  38. Etmimi HM, Mallon PE, Sanderson RD (2013) Polymer/graphite nanocomposites: Effect of reducing the functional groups of graphite oxide on water barrier properties. Eur Polymer J 49:3460–3470

    Article  CAS  Google Scholar 

  39. Wang Y, Yang D, Zheng X, Jiang Z, Li J (2008) Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. J Power Sources 183:454–463

    Article  CAS  Google Scholar 

  40. Mohtar SS, Ismail AF, Matsuura T (2011) Preparation and characterization of SPEEK/MMT-STA composite membrane for DMFC application. J Membr Sci 371:10–19

    Article  CAS  Google Scholar 

  41. Sasikala S, Meenakshi S, Bhat SD, Sahu AK (2014) Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells. Electrochim Acta 135:232–241

    Article  CAS  Google Scholar 

  42. Wu H, Cao Y, Li Z, He G, Jiang Z (2015) Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. J Power Sour 273:544–553

    Article  CAS  Google Scholar 

  43. Yin Y, Xu T, He G, Jiang Z, Wu H (2015) Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol–gel process. J Power Sour 276:271–278

    Article  CAS  Google Scholar 

  44. Yin Y, Wang H, Cao L, Li Z, Li Z, Gang M, Wang C, Wu H, Jiang Z, Zhang P (2016) Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochim Acta 203:178–188

    Article  CAS  Google Scholar 

  45. Erdener H, Akay RG, Yücel H, Baç N, Eroğlu İ (2009) Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrogen Energy 34:4645–4652

    Article  CAS  Google Scholar 

  46. Yang T, Liu C (2011) SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell. Int J Hydrogen Energy 36:5666–5674

    Article  CAS  Google Scholar 

  47. Purwanto M, Atmaja L, Mohamed MA, Salleh MT, Jaafar J, Ismail AF, Widiastuti N (2016) Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Adv 6(3):2314–2322

    Article  CAS  Google Scholar 

  48. Doğan H, Inan TY, Unveren E, Kaya M (2010) Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. Int J Hydrogen Energy 35:7784–7795

    Article  CAS  Google Scholar 

  49. Bello M, Zaidi SMJ, Rahman SU (2008) Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. J Membr Sci 322:218–224

    Article  CAS  Google Scholar 

  50. Colicchio I, Demco DE, Baias M, Keul H, Moeller M (2009) Influence of the silica content in SPEEK–silica membranes prepared from the sol–gel process of polyethoxysiloxane: Morphology and proton mobility. J Membr Sci 337:125–135

    Article  CAS  Google Scholar 

  51. Yang CC, Chiu SJ, Kuo SC (2011) Preparation of poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) composite membranes for hydrogen–oxygen polymer electrolyte fuel cells. Curr Appl Phys 11:S229–S237

    Article  Google Scholar 

  52. Norddin MNAM, Ismail AF, Rana D, Matsuura T, Mustafa A, Tabe-Mohammadi A (2008) Characterization and performance of proton exchange membranes for direct methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with charged surface modifying macromolecule. J Membr Sci 323:404–413

    Article  CAS  Google Scholar 

  53. Huang YJ, Ye YS, Syu YJ, Hwang BJ, Chang FC (2012) Synthesis and characterization of sulfonated polytriazole-clay proton exchange membrane by in situ polymerization and click reaction for direct methanol fuel cells. J Power Sour 208:144–152

    Article  CAS  Google Scholar 

  54. Baradie B, Dodelet J, Guay D (2000) Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J Electroanal Chem 489:101–105

    Google Scholar 

  55. Kwak S (2003) Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell. Solid State Ionics 160:309–315

    Article  CAS  Google Scholar 

  56. Gang M, He G, Li Z, Cao K, Li Z, Yin Y, Wu H, Jiang Z (2016) Graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J Membr Sci 507:1–11

    Article  CAS  Google Scholar 

  57. Li H, Zhang G, Wu J, Zhao C, Zhang Y, Shao K, Han M, Lin H, Zhu J, Na H (2010) A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells. J Power Sour 195:6443–6449

    Article  CAS  Google Scholar 

  58. Kim J, Kim B, Jung B (2002) Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers. J Membr Sci 207:129–137

    Article  CAS  Google Scholar 

  59. Paneri A, Heo Y, Ehlert G, Cottrill A, Sodano H, Pintauro P, Moghaddam S (2014) Proton selective ionic graphene-based membrane for high concentration direct methanol fuel cells. J Membr Sci 467:217–225

    Article  CAS  Google Scholar 

  60. Tijing LD, Choi J-S, Lee S, Kim S-H, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462

    Article  CAS  Google Scholar 

  61. Krishnan NN, Henkensmeier D, Park Y-H, Jang J-H, Kwon T, Koo CM, Kim H-J, Han J, Nam S-W (2016) Blue membranes: sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC. J Membr Sci 502:1–10

    Article  CAS  Google Scholar 

  62. Anadão P, Sato LF, Wiebeck H, Valenzuela-Díaz FR (2010) Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci 48:127–132

    Article  CAS  Google Scholar 

  63. Qiu J, Zhai M, Chen J, Wang Y, Peng J, Xu L, Li J, Wei G (2009) Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method. J Membr Sci 342:215–220

    Article  CAS  Google Scholar 

  64. Ladewig BP, Knott RB, Martin DJ, Diniz da Costa JC, Lu GQ (2007) Nafion-MPMDMS nanocomposite membranes with low methanol permeability. Electrochem Commun 9:781–786

    Article  CAS  Google Scholar 

  65. Balbaşı M, Gözütok B (2010) Poly(vinyl alcohol)-colloidal silica composite membranes for fuel cells. Synth Met 160:150–155

    Article  CAS  Google Scholar 

  66. Ballengee JB, Pintauro PN (2011) Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44:7307–7314

    Article  CAS  Google Scholar 

  67. Barbora L, Acharya S, Verma A (2009) Synthesis and ex‐situ characterization of Nafion/TiO2 composite membranes for direct ethanol fuel cell. In: Macromolecular symposia, vol 277, No. 1, pp 177–189. Wiley, New York

    Google Scholar 

  68. Baş D, Boyacı İH (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78:846–854

    Article  CAS  Google Scholar 

  69. Basavarajappa M, Draper T, Toth P, Ring TA, Miskovic S (2015) Numerical and experimental investigation of single phase flow characteristics in stirred tanks using Rushton turbine and flotation impeller. Miner Eng 83:156–167

    Article  CAS  Google Scholar 

  70. Kim S, Lee H, Ahn D, Woong Park H, Chang T, Lee W (2013) Direct sulfonation and photocross linking of unsaturated poly(styrene-b-butadiene-b-styrene) for proton exchange membrane of direct methanol fuel cell. J Membr Sci 427:85–91

    Article  CAS  Google Scholar 

  71. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sour 208:96–119

    Article  CAS  Google Scholar 

  72. Kahveci EE, Taymaz I (2014) Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology. Int J Hydrogen Energy 39:10655–10663

    Article  CAS  Google Scholar 

  73. Winters-Miner LA, Bolding PS, Hilbe JM, Goldstein M, Hill T, Nisbet R, Walton N, Miner GD, Winters R (2015) Practical predictive analytics and decisioning systems for medicine. In: Practical predictive analytics and decisioning systems for medicine. Elsevier, Amsterdam, pp 757–794

    Google Scholar 

  74. Wolfe JE, Lind OT (2008) Influence of suspended clay on phosphorus uptake by periphyton. Hydrobiologia 610:211–222

    Article  CAS  Google Scholar 

  75. Woo Y, Oh SY, Kang YS, Jung B (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45

    Article  CAS  Google Scholar 

  76. Wu C-S, Lin F-Y, Chen C-Y, Chu PP (2006) A polyvinyl alcohol/p-sulfonate phenolic resin composite proton conducting membrane. J Power Sour 160:1204–1210

    Article  CAS  Google Scholar 

  77. Wu HC, Li YY, Sakoda A (2010) Synthesis and hydrogen storage capacity of exfoliated turbostratic carbon nanofibers. Int J Hydrogen Energy 35:4123–4130

    Article  CAS  Google Scholar 

  78. Wu X, Tong L (2013) Optical microfibers and nanofibers. Nanophotonics 2:407–428

    Article  Google Scholar 

  79. Lin Z, Yao Y, Zhang X (2014) Electrospun nanofibers for design and fabrication of electrocatalysts and electrolyte membranes for fuel cells. In: Electrospun nanofibers for energy and environmental applications, pp 41–67. Springer, Berlin

    Google Scholar 

  80. Lucking AD, Pan L, Narayanan DL, Clifford CEB (2005) Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. J Phys Chem B 109:12710–12717

    Article  CAS  Google Scholar 

  81. Lue SJ, Pai Y-L, Shih C-M, Wu M-C, Lai S-M (2015) Novel bilayer well-aligned nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells. J Membr Sci 493:212–223

    Article  CAS  Google Scholar 

  82. Lueking AD, Gutierrez HR, Fonseca DA, Dickey E (2007) Structural characterization of exfoliated graphite nanofibers. Carbon 45:751–759

    Article  CAS  Google Scholar 

  83. Lueking AD, Pan L, Narayanan D, Clifford CEB (2005a) Exfoliated graphite nanofibers for hydrogen storage, pp 457–459. ACS Division of Fuel Chemistry (preprints)

    Google Scholar 

  84. Thiam HS, Daud WRW, Kamarudin SK, Mohamad AB, Kadhum AAH, Loh KS, Majlan EH (2013) Performance of direct methanol fuel cell with a palladium–silica nanofibre/nafion composite membrane. Energy Convers Manag 75:718–726

    Article  CAS  Google Scholar 

  85. Thomassin J-M, Pagnoulle C, Caldarella G, Germain A, Jérôme R (2005) Impact of acid containing montmorillonite on the properties of Nafion® membranes. Polymer 46:11389–11395

    Article  CAS  Google Scholar 

  86. Tong HW, Wang M (2013) A novel technique for the fabrication of 3D nanofibrous scaffolds using simultaneous positive voltage electrospinning and negative voltage electrospinning. Mater Lett 94:116–120

    Article  CAS  Google Scholar 

  87. Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polym Degrad Stab 96:1064–1073

    Article  CAS  Google Scholar 

  88. Tran NH, Dennis GR, Milev AS, Kannangara GSK, Williams P, Wilson MA, Lamb RN (2006) Dispersion of organically modified clays within n-alcohols. J Colloid Interface Sci 297:541–545

    Article  CAS  Google Scholar 

  89. Tricoli V, Carretta N, Bartolozzi M (2000) A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes. J Electrochem Soc 147(4):1286–1290

    Article  CAS  Google Scholar 

  90. Xia X, Cai S, Hu J, Xie C (2006) Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices. J Biomed Mater Res Part B Appl Biomat 79:345–352

    Article  CAS  Google Scholar 

  91. Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44

    Article  CAS  Google Scholar 

  92. Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J (2014) SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. J Membr Sci 467:23–35

    Article  CAS  Google Scholar 

  93. Xue S, Yin G, Cai K, Shao Y (2007) Permeabilities of methanol, ethanol and dimethyl ether in new composite membranes: a comparison with Nafion membranes. J Membr Sci 289(1):51–57

    Article  CAS  Google Scholar 

  94. Yang L, Sun H, Wang S, Jiang L, Sun G (2012) Reversible and irreversible loss in performance in direct methanol fuel cells during freeze/thaw cycles. J Power Sour 219:193–198

    Article  CAS  Google Scholar 

  95. Yang T (2008) Preliminary study of SPEEK/PVA blend membranes for DMFC applications. Int J Hydrogen Energy 33:6772–6779

    Article  CAS  Google Scholar 

  96. Yang T (2009) Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells. J Membr Sci 342:221–226

    Article  CAS  Google Scholar 

  97. Yang T, Xu Q, Wang Y, Lu B, Zhang P (2008) Primary study on double-layer membranes for direct methanol fuel cell. Int J Hydrogen Energy 33:6766–6771

    Article  CAS  Google Scholar 

  98. Zaidi L, Bruzaud S, Bourmaud AP, Kaci M, Grohens Y (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. J Appl Polym Sci 116:1357–1365

    CAS  Google Scholar 

  99. Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning–Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3(1):102–110

    Google Scholar 

  100. Zhang S, He G, Gong X, Zhu X, Wu X, Sun X, Zhao X, Li H (2015) Electrospun nanofiber enhanced sulfonated poly (phthalazinone ether sulfone ketone) composite proton exchange membranes. J Membr Sci 493:58–65

    Article  CAS  Google Scholar 

  101. Zhang Y-Q (1998) Natural silk fibroin as a support for enzyme immobilization. Biotechnol Adv 16:961–971

    Article  CAS  Google Scholar 

  102. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  103. Cai Z, Yang G (2010) Research progress in electrospinning technique for biomedical materials. Sheng wu yi xue gong cheng xue za zhi = J Biomed Eng Shengwu yixue gongchengxue zazhi 27:1389–1392

    Google Scholar 

  104. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578

    Article  CAS  Google Scholar 

  105. Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  CAS  Google Scholar 

  106. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167:283–293

    Article  CAS  Google Scholar 

  107. Cong Y, Liu S, Chen H (2013) Fabrication of conductive polypyrrole nanofibers by electrospinning. J Nanomater

    Google Scholar 

  108. Demir MM, Yilgor I, Yilgor EEA, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43(11):3303–3309

    Article  CAS  Google Scholar 

  109. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  110. Graeser M, Bognitzki M, Massa W, Pietzonka C, Greiner A, Wendorff JH (2007) Magnetically anisotropic cobalt and iron nanofibers via electrospinning. Adv Mater 19:4244–4247

    Article  CAS  Google Scholar 

  111. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie—International Edition

    Google Scholar 

  112. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13):4799–4810

    Article  CAS  Google Scholar 

  113. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids (1994–present) 13(8):2201–2220

    Google Scholar 

  114. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chemi Asian J

    Google Scholar 

  115. Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater

    Google Scholar 

  116. Ji HM, Lee HW, Karim MR, Cheong IW, Bae EA, Kim TH, Islam MS, Ji BC, Yeum JH (2009) Electrospinning and characterization of medium-molecular-weight poly(vinyl alcohol)/high-molecular-weight poly(vinyl alcohol)/montmorillonite nanofibers. Colloid Polym Sci 287:751–758

    Article  CAS  Google Scholar 

  117. Kang IK, Xing ZC, Han SJ, Shin YS (2011) Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater

    Google Scholar 

  118. Kong L, Ziegler GR (2013) Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr Polym 92:1416–1422

    Article  CAS  Google Scholar 

  119. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3):493–497

    Article  CAS  Google Scholar 

  120. Kostakova E, Meszaros L, Gregr J (2009) Composite nanofibers produced by modified needleless electrospinning. Mater Lett 63:2419–2422

    Article  CAS  Google Scholar 

  121. Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater

    Google Scholar 

  122. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  Google Scholar 

  123. Park JH, Lee HW, Chae DK, Oh W, Yun JD, Deng Y, Yeum JH (2009) Electrospinning and characterization of poly(vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid Polym Sci 287:943–950

    Article  CAS  Google Scholar 

  124. Rafiei S, Maghsoodloo S, Noroozi B, Mottaghitalab V, Haghi AK (2013) Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellulose Chem Technol 47:323–338

    Google Scholar 

  125. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fauzi Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Awang, N., Jaafar, J., Ismail, A.F., Matsuura, T., Othman, M.H.D., Rahman, M.A. (2017). Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_7

Download citation

Publish with us

Policies and ethics