Skip to main content

Organic/TiO2 Nanocomposite Membranes: Recent Developments

  • Chapter
  • First Online:
  • 1481 Accesses

Abstract

Fuel cells may become a key energy management, but technical and economic feasibility still need to be sensibly improved. Many studies in order to overcome the limits of the technology are nowadays in progress. A promising and interesting development solution appears to be the improvement of the membrane properties used in fuel cells by nanotechnologies. In this book chapter, a review on the recent developments about organic/TiO2 nanocomposite membranes will be presented, and the results obtained in the recent years will be discussed. As a main issue, polymer composites containing a small amount of inorganic materials lead to a significant increment in the interfacial area of the organic–inorganic phases, enhancing a considerable volume fraction of the interfacial polymer. Moreover, these composite systems may be capable to provide unique combination of organic properties, such as electrical property and processability, together with inorganic, comprising thermal and chemical stability and minor fuel permeability. To sum up, the organic–inorganic composite systems might also provide improved chemical and mechanical stability, as well as high proton conductivity at high temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim MS, Lee SJ, Kang JU, Bae KJ (2005) Preparations of polypropylene membrane with high porosity in supercritical CO2 and its application for PEMFC. J Ind Eng Chem 11:187–193

    CAS  Google Scholar 

  2. Jang SY, Han SH (2012) Preparation of high styrenic sulfonated polySEPS/clay composite film for proton exchange membranes (PEMs). J Ind Eng Chem 18:1280–1285

    Article  CAS  Google Scholar 

  3. Lee SJ, Quan ND, Hwang JM, Lee SD, Kim HG, Lee HJ, Kim HS (2006) Polymer electrolyte membranes for fuel cells. J Ind Eng Chem 12:175–183

    Article  CAS  Google Scholar 

  4. Ayad MM, El-Nasr AA, Stejskal J (2012) Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. J Ind Eng Chem 18:1964–1969

    Article  CAS  Google Scholar 

  5. Liou TH, Lin HS (2012) Synthesis and surface characterization of silica nanoparticles from industrial resin waste controlled by optimal gelation conditions. J Ind Eng Chem 18:1428–1437

    Article  CAS  Google Scholar 

  6. Hosseini SM, Madaeni SS, Zendehnam A, Moghadassi AR, Khodabakhshi AR, Sanaeepur H (2013) Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. J Ind Eng Chem 19:854–862

    Article  CAS  Google Scholar 

  7. Khajenoori M, Rezaei M, Nematollahi B (2013) Preparation of noble metal nanocatalysts and their applications in catalytic partial oxidation of methane. J Ind Eng Chem 19:981–986

    Article  CAS  Google Scholar 

  8. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  9. Licoccia S, Traversa E (2006) Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids. Power Sour 159:12–20

    Article  CAS  Google Scholar 

  10. Slade SM, Smith JR, Campbell SA, Ralph TR, Ponce De León C, Walsh FC (2010) Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles. Electrochim Acta 55:6818–6829

    Article  CAS  Google Scholar 

  11. Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38:9387–9394

    Article  CAS  Google Scholar 

  12. Liu Z, Guo B, Huang J, Hong L, Han M, Gan LM (2006) Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. J Power Sour 157:207–211

    Article  CAS  Google Scholar 

  13. Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117

    Article  CAS  Google Scholar 

  14. Li ZH, Zhang HP, Zhang P, Li GC, Wu YP, Zhou XD (2008) Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J Membr Sci 322:416–422

    Article  CAS  Google Scholar 

  15. Amjadi M, Rowshanzamir Peighambardoust SJ, Hosseini MG, Eikani MH (2010) Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 5:9252–9260

    Article  Google Scholar 

  16. Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membrane temperature PEM fuel cells. J Membr Sci 369:250–257

    Article  Google Scholar 

  17. Cozzi D, Bonis C, Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sour 248:1127–1132

    Article  CAS  Google Scholar 

  18. Beauger C, Testut L, Berthom-Fabry S, Georgi F, Guetaz L (2016) Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater 232:109–118

    Article  CAS  Google Scholar 

  19. Gojković SL, Babić BM, Radmilović VR, Krstajić NV (2010) Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs. J Electroanal Chem 639:161–166

    Article  Google Scholar 

  20. Houn-Rhee C, Kim Y, Sung J, Kyung H, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells. Power sour 159:1015–1024

    Article  Google Scholar 

  21. Jun Y, Zarrin H, Fowler M, Chen Z (2011) Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Hydrogen energy 36:6073–6081

    Article  CAS  Google Scholar 

  22. Yang C, Chiu S, Lee K, Chien W, Lin C, Huang C (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. Power sour 184:44–51

    Article  CAS  Google Scholar 

  23. Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt–TiO2/PSSA) composite polymer membrane. J Power Sour 195(11):3407–3415

    Article  CAS  Google Scholar 

  24. Mroczkowska-Szerszen M, Siekierski M, Letmanowski R, Zabost D, Piszcz M, Zukowska G, Sasim E, Wieczorek W, Dudek M, Struzik M (2013) Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applications. Electrochim Acta 104:487–495

    Article  CAS  Google Scholar 

  25. Qian Y, Chi L, Zhou W, Yu Zhang Z, Zhang Z, Jian Z (2016) Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment. Surf Sci 360:749–757

    Article  CAS  Google Scholar 

  26. Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sour 142:223–237

    Article  CAS  Google Scholar 

  27. Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621

    Article  CAS  Google Scholar 

  28. Karthikeyan CS, Nunes SP, Schulte K (2006) Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials. Macromol Chem Phys 207:336–341

    Article  CAS  Google Scholar 

  29. Vona MLD, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) SPEEK–TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. J Membr Sci 96(2):156–161

    Google Scholar 

  30. Dou Z, Zhong S, Zhao C, Li X, Fu T, Na H (2008) Synthesis and characterization of a series of SPEEK/TiO2 hybrid membranes for direct methanol fuel cell. J Appl Polym Sci 109:1057–1062

    Article  CAS  Google Scholar 

  31. Tripathi BP, Shahi VK (2009) Surface redox polymerized SPEEK–MO2–PANI (M = Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol. Colloids Surf A 340:10–19

    Article  CAS  Google Scholar 

  32. Ayyaru S, Dharmalingam S (2013) Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane. RSC Adv 3:25243–25251

    Article  CAS  Google Scholar 

  33. Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly(ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144

    Article  CAS  Google Scholar 

  34. Narayanaswamy V, Dharmalingam S (2015) Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application. J Membr Sci 50:6302–6312

    Google Scholar 

  35. Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119

    Article  CAS  Google Scholar 

  36. Wang Z, Tang H, Pan M (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257

    Article  CAS  Google Scholar 

  37. Devrim Y, Erkan S, Bac N, Eroglu I (2009) Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy 34:3467–3475

    Article  CAS  Google Scholar 

  38. Park JT, Koh JH, Roh DK, Shul YG, Kim JH (2011) Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles. Int J Hydrogen Energy 36:1820–1827

    Article  CAS  Google Scholar 

  39. Ayyaru S, Dharmalingam S (2015) A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application. Energy 88:202–208

    Article  CAS  Google Scholar 

  40. Aslan A, Ayhan B (2014) Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255:89–95

    Article  CAS  Google Scholar 

  41. Seger B, Kamat PV (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 113:18946–18952

    Article  CAS  Google Scholar 

  42. Bella F, Lamberti A, Sacco A, Bianco S, Chiodoni A, Bongiovanni R (2014) Novel electrode and electrolyte membranes: towards flexible dye-sensitized solar cell combining vertically aligned TiO2 nanotube array and light-cured polymer network. J Membr Sci 470:125–131

    Article  CAS  Google Scholar 

  43. Xu T, Zhang H, Zhong H, Ma Y, Jin H, Zhang Y (2010) Improved stability of TiO2 modified Ru85Se15/C electrocatalyst for proton exchange membrane fuel cells. Power sour 195(24):8075–8079

    Article  CAS  Google Scholar 

  44. Chao WK, Huang RH, Huang CJ, Hsueh JL, Shieu FS (2010) Effect of hygroscopic platinum/titanium dioxide particles in the anode catalyst layer on the PEMFC performance. J Electrochem Soc B1012–B1018

    Google Scholar 

  45. Matos J, Borodzinski A, Zychora AM, Kedzierzawski P, Mierzwa B, Juchniewicz K, Mazurkiewicz M, Hernández-Garrido JC (2015) Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2–C materials. Appl Catal B 163:167–178

    Article  CAS  Google Scholar 

  46. Li Y, Liu C, Liu Y, Feng B, Li L, Pan H, Kellogg W, Higgins D, Wu G (2015) Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. J Power Sour 286:354–361

    Article  CAS  Google Scholar 

  47. Zhang C, Yu H, Fu L, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369

    Article  CAS  Google Scholar 

  48. Garcia-Gomez NA, Balderas-Renteria I, Garcia-Gutierrez DI, Mosqueda HA, Sánchez EM (2015) Development of mats composed by TiO2 and carbon dual electrospun nanofibers: a possible anode material in microbial fuel cells. Mater Sci Eng B 193:130–136

    Article  CAS  Google Scholar 

  49. Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) Graphene-modified electrodes for enhancing the performance of microbial fuel cells. J Power Sour 196:5402–5407

    Article  CAS  Google Scholar 

  50. Zhao CE, Wang WJ, Sun D, Wang X, Zhang JR, Zhu JJ (2014) Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chem Eur J 20:7091–7097

    Article  CAS  Google Scholar 

  51. Zhou G, Zhao Y, Zu C, Manthiramn A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Spanish Ministry of Economy and Competitiveness is gratefully acknowledged for project CTM2014-61105-JIN fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Miguel Ochando-Pulido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ochando-Pulido, J.M., Corpas-Martínez, J.R., Stoller, M., Martínez-Férez, A. (2017). Organic/TiO2 Nanocomposite Membranes: Recent Developments. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_2

Download citation

Publish with us

Policies and ethics