Skip to main content

Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique

  • Chapter
  • First Online:
Organic-Inorganic Composite Polymer Electrolyte Membranes

Abstract

Fuel cells are gaining a considerable attention as a clean and promising technology for energy conversion in the twenty-first century. One of the key benefits of fuel cells is the direct energy conversion that enables the achievement of high efficiency. Proton exchange membranes (PEMs) are the key components in fuel cell system and there is a considerable application-driven interest in lowering the membrane cost and extending the operating window of PEMs. Current proton exchange membrane fuel cells (PEMFC) technology is based on expensive perfluorinated PEMs that operate effectively only under fully hydrated conditions. To address this problem, electrospinning is a promising technique, which can produce nanoscale fibres. This chapter thus presents an overview of fuel cell technology and production of proton exchange membranes developed through electrospinning technique. An attempt was also made to discuss the recent progress made on the new materials, such as Nafion, poly(vinylidene fluoride) (PVDF), poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), etc. The unique three-dimensional network structures of the electrospun membranes offer adequate mechanical properties and proton conductivity. Among the nanofibres, sulfonated polyimide nanofibres showed improved membrane stability. Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fibre mats are investigated for mechanical strength and electrochemical selectivity. At the end, we have discussed the present status and the future prospectus of electrospun nanofibres for fuel cell applications. To compile this chapter and to provide adequate information to the readers, we have explored all possible ways, such as research articles, reviews, books, book chapters and Google sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFC:

Alkaline fuel cells

BPPO:

Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)

CTE:

Coefficient of thermal expansion

DC:

Direct current

DMFC:

Direct methanol fuel cell

DSC:

Differential scanning calorimetry

EF:

Electrospun fibre

EPM:

Electrospun PVDF membrane

FCs:

Fuel cells

FCV:

Fuel cell vehicle

IEC:

Ion exchange capacity

LBL:

Layer-by-layer

LPG:

Liquefied petroleum gas

MCFC:

Molten carbonate fuel cells

MEA:

Membrane electrode assemblies

NF:

Nanofibre

NGO:

Non-governmental organizations

NR:

Nanorod

NW:

Nanowire

OEM:

Original equipment manufacturer

PA 6(3) T:

Poly(trimethyl hexamethylene terephthalamide)

PAA:

Poly(acrylic acid)

PAFC:

Phosphoric acid fuel cells

PDAC:

Poly(diallyl dimethyl ammonium chloride)

PEEK:

Poly(ether ether ketone)

PEK:

Poly(ether ketone)

PEM:

Proton exchange membrane

PEMFC:

Proton exchange membrane fuel cell

PEO:

Poly(ethylene oxide)

PFSA:

Perfluorosulfonic acid

PHR:

Phenoxy resin

PLLA:

Poly-l-lactide

POSS:

Polyhedral oligosilsesquioxane

PPO:

Poly(2,6-dimethyl-1,4-phenylene oxide)

PPO:

Poly(2,6-dimethyl-1,4-phenyleneoxide)

PS:

Poly(styrene)

PSSA-MA:

Poly(styrene sulphonic acid-co-maleic acid)

PTFE:

Polytetrafluoroethylene

PVA:

Poly(vinyl alcohol)

PVC:

Poly(vinyl chloride)

PVDF:

Poly(vinylidene fluoride)

PVP:

Polyvinyl pyrrolidone

RH:

Relative humidity

SEM:

Scanning electron microscopy

SOFC:

Solid oxide fuel cells

Tc :

Crystaline temperature

Tg :

Glass transition

Tm :

Melting temperature

WU:

Water uptake

References

  1. Grove WR (1839) On voltaic series and the combination of gases by platinum, philosophical magazine. J Sci 14:127–130

    Google Scholar 

  2. Sevim ÜC, Ayhan B, Seyed SH (2012) Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog Polym Sci 37:1265–1291

    Article  Google Scholar 

  3. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440

    Article  CAS  Google Scholar 

  4. Yu X, Starke MR, Tolbert LM et al (2007) Fuel cell power conditioning for electric power applications: a summary. IET Electr Power Appl 1:643–656

    Article  Google Scholar 

  5. Kim DS, Park HB, Rhim JW et al (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. J Solid State Ionics 176:117–126

    Article  CAS  Google Scholar 

  6. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  7. Rahman MK, Aiba G, Susan MA et al (2004) Proton exchange membranes based on sulfonimide for fuel cell applications. Electrochim Acta 50:633–638

    Article  CAS  Google Scholar 

  8. Wang F, Hickner M, Kim YS, Zawodzinski TA et al (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 97:231–242

    Article  Google Scholar 

  9. Chang JH, Hyeok JP, Park GG et al (2003) Proton conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sourc 124:18–25

    Article  CAS  Google Scholar 

  10. Elabd YA, Napadensky E, Sloan JM et al (2003) Triblock copolymer ionomer membranes: part I. Methanol and proton transport. J Membr Sci 217:227–242

    Article  CAS  Google Scholar 

  11. Felix NCA (2015) Electric power management for a grid connected renewable energy sources. Int J Eng Sci 4:443–452

    Google Scholar 

  12. Dervisoglu R (2012): Solid oxide fuel cell protonic.svg. http://en.wikipedia.org/wiki/File:Solid_oxide_fuel_cell.svg. Accessed 3 May 2012

  13. Bratsch SG (1989) Standard electrode potentials and temperature coefficients in water at 298.15 K. J Phys Chem 18:1–21

    CAS  Google Scholar 

  14. He R, Li Q, Bach A et al (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45

    Article  CAS  Google Scholar 

  15. Qiao J, Saito M, Hayamizu K et al (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J Electrochem Soc 153:967–974

    Article  Google Scholar 

  16. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960 to the year 2000 part I. Fundamental scientific aspects. J Power Sources 102:242–252

    Article  CAS  Google Scholar 

  17. La Conti AB, Hamdan M, Donald RC (2003) Mechanisms of membrane degradation. In: Vielstic W, Lamm L, Gasteiger HA (eds) Handbook of fuel cells fundamentals, technology, applications. Wiley, New York, pp 1741–1756

    Google Scholar 

  18. Hazlina J, Juhana J, Muhammad N et al (2015) A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell. J Nanomater 2015:1–16

    Google Scholar 

  19. Kariduraganavar MY, Kittur AA, Kulkarni SS (2012) Ion exchange membranes: preparation, properties and applications. In: Inamuddin, Luqman M (eds) Ion exchange technology I: theory and materials. Springer, New York, pp 233–276

    Google Scholar 

  20. Xuan C, Zheng S, Nancy G et al (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms and mitigation. J Power Sources 165:739–756

    Article  Google Scholar 

  21. Yun SY, John R, Bing JH et al (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963

    Article  Google Scholar 

  22. Zhang N, Zhang G, Xu D et al (2011) Cross-linked membranes based on sulfonated poly(ether ether ketone) (SPEEK)/Nafion for direct methanol fuel cells (DMFCs). Int J Hydrogen Energy 36:11025–11033

    Article  CAS  Google Scholar 

  23. Gode P, Hult A, Jannasch P, Johansson M et al (2006) A novel sulfonated dendritic polymer as the acidic component, in proton conducting membranes. Solid State Ionics 177:787–794

    Article  CAS  Google Scholar 

  24. Hu H, Xiao M, Wang SJ et al (2010) Poly (fluorenyl ether ketone) ionomers containing separated hydrophilic multiblocks used in fuel cells as proton exchange membranes. Int J Hydrogen Energy 35:682–689

    Article  CAS  Google Scholar 

  25. Kariduraganavar MY, Nagarale RK, Kittur AA et al (2006) A review on ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–246

    Article  CAS  Google Scholar 

  26. Mader JA, Benicewicz BC (2010) Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells. Fuel Cells 11:212–221

    Article  Google Scholar 

  27. Miyatake K, Zhou H, Matsuo T et al (2004) Proton conductive polyimide electrolytes containing trifluoromethyl groups, synthesis and DMFC performance. Macromolecules 37:4961–4966

    Article  CAS  Google Scholar 

  28. Mulijani S, Dahlan K, Wulanawati A (2014) Sulfonated polystyrene copolymer: synthesis, characterization and its application of membrane for direct methanol fuel cell (DMFC). Int J Mater, Mech Manuf 2:36–40

    CAS  Google Scholar 

  29. Nakagawa T, Nakabayashi K, Higashihara T et al (2010) A high performance polymer electrolyte membrane based on sulfonated poly(ether sulfone) with binaphthyl units. J Mater Chem 20:6662–6667

    Article  CAS  Google Scholar 

  30. Rachipudi PS, Kittur AA, Choudhari SK (2009) Development of polyelectrolyte complexes of chitosan and phosphotungstic acid as pervaporation membranes for dehydration of isopropanol. Eur Polym J 45:3116–3126

    Article  CAS  Google Scholar 

  31. Seong YH, Won J, Kim SK et al (2011) Synthesis and characterization of proton exchange membranes based on sulfonated poly(fluorenyl ether nitrile oxynaphthalate) for direct methanol fuel cells. Int J Hydrogen Energy 36:8492–8498

    Article  CAS  Google Scholar 

  32. Xu K, Oh H, Hickneret MA et al (2011) Highly conductive aromatic ionomers with perfluorosulfonic acid side chains for elevated temperature fuel cells. Macromolecules 44:4605–4609

    Article  CAS  Google Scholar 

  33. Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

    Article  CAS  Google Scholar 

  34. Mitchell GR, Mohan SD, Davis FJ et al (2015) Structure development in electrospun fibres. In: Mitchell GR (ed) Electrospinning: principles, practice and possibilities. RSC, London, UK, pp 136–171

    Chapter  Google Scholar 

  35. Seeram R, Kazutoshi F, Wee ET (2006) Electrospinning nanofibres: solving global issues. Mater Today 9:40–50

    Google Scholar 

  36. Bognitzki M, Hou H, Ishaque M et al (2000) Polymer, metal and hybrid nano- and mesotubes by coating degradable polymer template fibres (TUFT Process). Adv Mater 12:637–640

    Article  CAS  Google Scholar 

  37. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibres by electrospinning. Nano Lett 4:933–938

    Article  CAS  Google Scholar 

  38. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  39. Audrey F, Ioannis SC (2003) Polymer nanofibres assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  Google Scholar 

  40. Liu Y, He JH, Yu JY et al (2015) Controlling numbers and sizes of beads in electrospun nanofibres. Polym Int 57:632–636

    Article  Google Scholar 

  41. Deitzel JM, leinmeser JK, Harris D et al (2001) The effect of processing variables on the morphology of electrospun nanofibres and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  42. Taylor G (1969) Electrically driven jets. In: Proceedings of the Royal Society A. Mathematical, physical and engineering science. vol 313, pp 453–475

    Google Scholar 

  43. Yiu-in AE, Koombhongse S, Reneker DH et al (2001) Bending instability in electrospinning of nanofibres. J Appl Phys 89:3018–3026

    Article  Google Scholar 

  44. Zhang YZ, Feng Y, Huang ZM et al (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17:901–908

    Article  CAS  Google Scholar 

  45. Lu P, Ding B (2008) Applications of electrospun fibres. Recent Pat Nanotechnol 2:169–182

    Article  CAS  Google Scholar 

  46. Maleki M, Latifi M, Amani-Tehran M (2010) Optimizing electrospinning parameters for finest diameter of nanofibres. Int J Chem Mol Nucl Mater Metall Eng 4:268–271

    Google Scholar 

  47. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71–79

    Article  CAS  Google Scholar 

  48. Megelski S, Stephens JS, Chase DB (2002) Micro and nanostructured surface morphology on electrospun polymer fibres. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  49. Buchko CJ, Chen LC, Yu S et al (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  50. Zong XH, Kim K, Fang DF et al (2002) Structure and process relationship of electrospun bioabsorbable nanofibre membranes. Polymer 43:4403–4412

    Article  CAS  Google Scholar 

  51. Bognitzki M, Czado W, Frese T (2001) Nanostructured fibres via electrospinning. J Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  52. Lee KH, Kim HY, La YM et al (2002) Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. J Polym Sci (Part B) 40:2259–2268

    Article  CAS  Google Scholar 

  53. Dao AT, Oldrich J (2010) Roller electrospinning in various ambient parameters. Olomouc, Czech Republic, EU 10:12–14

    Google Scholar 

  54. Snyder JD, Elabd YA (2009) Nafion nanofibres and their effect on polymer electrolyte membrane fuel cell Performance. J Power Sourc 186:385–392

    Article  CAS  Google Scholar 

  55. Pan C, Wu H, Wang C et al (2008) Nanowire-based high-performance “micro fuel cells”: one nanowire, one fuel cell. J Adv Mater 20:644–1648

    Article  Google Scholar 

  56. Choi J, Lee KM, Wycisk R et al (2008) Nanofibre network ion-exchange membranes. Macromolecules 41:4569–4572

    Article  CAS  Google Scholar 

  57. Tamura T, Kawakami H et al (2010) Aligned electrospun nanofibre composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328

    Article  CAS  Google Scholar 

  58. Bajon R, Balaji S, Guo SM (2009) Electrospun nafion nanofibre for protonexchange membrane fuel cell application. J Fuel Cell Sci Tech 6:1–6

    Article  Google Scholar 

  59. Chen H, Snyder JD, Elabd YA (2008) Electrospinning and solution properties of nafion and poly(acrylic acid). Macromolecules 41:128–135

    Article  CAS  Google Scholar 

  60. Laforgue A, Robitaille L, Mokrini A et al (2007) Fabrication and characterization of ionic conducting nanofibres. Macromol Mater Eng 292:1229–1236

    Article  CAS  Google Scholar 

  61. Dong B, Gwee L, David SC et al (2010) Super proton conductive high-purity nafion nanofibres. Nano Lett 10:3785–3790

    Article  CAS  Google Scholar 

  62. Okafor C, Maaza M, Mokrani T (2014) Nafion nanofibre composite membrane fabrication for fuel cell applications. Int J Chem Nucl Mater Metall Eng 8:389–392

    Google Scholar 

  63. Choi SW, Fu YW, Ahn YR et al (2008) Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells. J Power Sourc 180:167–171

    Article  CAS  Google Scholar 

  64. Chikh L, Delhorbe V, Fichet O (2011) Semi-interpenetrating polymer networks as fuel cell membranes. J Membr Sci 368:1–17

    Article  CAS  Google Scholar 

  65. Cai H, Shao K, Zhong S et al (2007) Properties of composite membranes based on sulfonated poly(ether ether ketone)s (SPEEK)/phenoxy resin (PHR) for direct methanol fuel cells usages. J Membr Sci 297:162–173

    Article  CAS  Google Scholar 

  66. Choi J, Wycisk R, Zhang W (2010) High conductivity perfluorosulfonic acid nanofibre composite fuel-cell membranes. Chemsuschem 3:1245–1248

    Article  CAS  Google Scholar 

  67. Piboonsatsanasakul P, Wootthikanokkhan J, Thanawan S et al (2008) Preparation and characterizations of direct methanol fuel cell membrane from sulfonated polystyrene/poly(vinylidene fluoride) blend compatibilized with poly(styrene)-b-poly(methyl methacrytlate) block copolymer. J Appl Polym Sci 107:1325–1336

    Article  CAS  Google Scholar 

  68. Yun SH, Woo JJ, Seo SJ et al (2011) Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofibre porous substrates for fuel cells. J Membr Sci 367:296–305

    Article  CAS  Google Scholar 

  69. Matthew MM, David SL, Paula TH et al (2013) Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications. J Appl Mater Interfaces 5:8155–8164

    Article  Google Scholar 

  70. Romklaw B, Manus S, Pitak N et al (2014) Electrospun fibres from polyvinyl alcohol, poly(styrene sulphonic acid-co-maleic acid) and imidazole for proton exchange membranes. Sci Asia 40:232–237

    Article  Google Scholar 

  71. Maryam O, Shahram MA, Masoud E et al (2015) Proton exchange membranes with microphase separated structure from dual electrospun poly(ether ketone) mats Producing ionic paths in a hydrophobic matrix. Chem Eng J 269:212–220

    Article  Google Scholar 

  72. Hoffmann P (2012) Tomorrow’s energy, revised and expanded edition, https://mitpress.mit.edu/books/tomorrows-energy-0

Download references

Acknowledgements

One of the authors (B.B. Munavalli) thanks UGC, New Delhi for awarding (RFSMS) fellowship to undertake research work. The authors also wish to thank UGC, New Delhi for providing the financial support under CPEPA Program [Contract No. 8-2/2008 (NS/PE)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadevappa Y. Kariduraganavar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kariduraganavar, M.Y., Munavalli, B.B., Torvi, A.I. (2017). Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_17

Download citation

Publish with us

Policies and ethics