Skip to main content

An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane

  • Chapter
  • First Online:

Abstract

Fuel cells provide high efficiency, clean energy and low/zero emission compared to fossil-based energy. The most important component of fuel cell systems is polymer electrolyte membrane (PEM), which acts as a charge carrier that transports proton (H+) ion from anode to cathode, as well as a barrier for anode fuel and cathode oxidant gas. Therefore, the basic requirements in terms of PEM performance include (1) good mechanical strength and toughness, (2) high thermal and chemical stability, (3) a good barrier for anode H2 and cathode O2, (4) a good proton conductance and (5) low electron conductance. In this chapter, the important attributes of PEM, such as chemical and mechanical stabilities have been described and reviewed. Efforts have been made to highlight the responses of chemical and mechanical stabilities of membrane at different temperatures and relative humidities of the fuel cell operation that lead to cell failure. A literature review regarding the chemical and mechanical degradation of membrane as well as the mitigation for the membrane degradation has also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang H, Li H, Yuan XZ (2011) PEM fuel cell failure mode analysis. CRC Press, Boca Raton

    Google Scholar 

  2. Zhou T et al (2015) A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J Power Sources 293:946–975

    Article  CAS  Google Scholar 

  3. An D et al (2016) Gradiently crosslinked polymer electrolyte membranes in fuel cells. J Power Sources 301:204–209

    Article  CAS  Google Scholar 

  4. Tanaka M (2016) Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym J 48(1):51–58

    Article  CAS  Google Scholar 

  5. Sanchez DG et al (2016) Analysis of the influence of temperature and gas humidity on the performance stability of polymer electrolyte membrane fuel cells. J Electrochem Soc 163(3):F150–F159

    Article  CAS  Google Scholar 

  6. Fang J et al (2015) Electrochemical polymer electrolyte membranes. CRC Press, Boca Raton

    Google Scholar 

  7. Nasef MM et al (2016) Radiation-grafted materials for energy conversion and energy storage applications. Prog Polym Sci

    Google Scholar 

  8. Zakaria Z, Kamarudin SK, Timmiati S (2016) Membranes for direct ethanol fuel cells: an overview. Appl Energy 163:334–342

    Article  CAS  Google Scholar 

  9. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26

    Article  CAS  Google Scholar 

  10. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384

    Article  CAS  Google Scholar 

  11. Gubler L, Scherer GG (2010) Trends for fuel cell membrane development. Desalination 250(3):1034–1037

    Article  CAS  Google Scholar 

  12. Li Q et al (2015) High temperature polymer electrolyte membrane fuel cells: approaches, status, and perspectives. Springer International Publishing

    Google Scholar 

  13. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270

    Article  CAS  Google Scholar 

  14. Letcher TM (2008) Future energy: improved, sustainable and clean options for our planet. Elsevier Science

    Google Scholar 

  15. Beguin F, Frackowiak E (2009) Carbons for electrochemical energy storage and conversion systems. CRC Press, Boca Raton

    Google Scholar 

  16. Pabby AK, Rizvi SSH, Requena AMS (2015) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  17. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112(5):2780–2832

    Article  CAS  Google Scholar 

  18. Matos BR et al (2016) Nafion membranes annealed at high temperature and controlled humidity: structure, conductivity, and fuel cell performance. Electrochim Acta 196:110–117

    Article  CAS  Google Scholar 

  19. Pan J et al (2015) Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chem Mater 27(19):6689–6698

    Article  CAS  Google Scholar 

  20. Kim S-U et al (2015) Effect of sulfonated poly(arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells. J Ind Eng Chem 23:316–320

    Article  CAS  Google Scholar 

  21. Yang Z et al (2016) Stability challenge in anion exchange membrane for fuel cells. Current Opin Chem Eng 12:22–30

    Article  Google Scholar 

  22. Kim J et al (2016) Mesoporous ceria-silica/poly(arylene ether sulfone) composite membranes for durability of fuel cell electrolyte membrane. Microporous Mesoporous Mater

    Google Scholar 

  23. Cheng J et al (2016) Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application. J Membr Sci 501:100–108

    Article  CAS  Google Scholar 

  24. Tanuma T, Itoh T (2016) Clarifying the chemical state of additives in membranes for polymer electrolyte fuel cells by X-ray absorption fine structure. J Power Sources 305:17–21

    Article  CAS  Google Scholar 

  25. Zhang Y et al (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3(7):675–691

    Article  Google Scholar 

  26. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52

    Article  CAS  Google Scholar 

  27. Poornesh KK, Cho C (2015) Stability of polymer electrolyte membranes in fuel cells: initial attempts to bridge physical and chemical degradation modes. Fuel Cells 15(1):196–203

    Article  CAS  Google Scholar 

  28. Marrony M et al (2008) Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions. J Power Sources 182(2):469–475

    Article  CAS  Google Scholar 

  29. Büchi FN, Inaba M, Schmidt TJ (2009) Polymer electrolyte fuel cell durability. Springer, New York

    Google Scholar 

  30. Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  31. Fiori C et al (2015) Critical review of fuel cell’s membranes and identification of alternative types for automotive applications. Int J Hydrogen Energy 40(35):11949–11959

    Article  CAS  Google Scholar 

  32. Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41(6):2382–2394

    Article  CAS  Google Scholar 

  33. Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28(12):7303–7330

    Article  CAS  Google Scholar 

  34. Zhang L et al (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97

    Article  Google Scholar 

  35. Haile SM (2003) Fuel cell materials and components? Acta Mater 51(19):5981–6000

    Article  CAS  Google Scholar 

  36. Velan Venkatesan S et al (2016) Progression in the morphology of fuel cell membranes upon conjoint chemical and mechanical degradation. J Electrochem Soc 163(7): F637–F643

    Google Scholar 

  37. Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242

    Article  CAS  Google Scholar 

  38. Tavassoli A et al (2016) Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells. J Power Sources 322:17–25

    Article  CAS  Google Scholar 

  39. Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14

    Article  CAS  Google Scholar 

  40. Wu J et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119

    Article  CAS  Google Scholar 

  41. Yuan XZ et al (2011) A review of polymer electrolyte membrane fuel cell durability test protocols. J Power Sources 196(22):9107–9116

    Article  CAS  Google Scholar 

  42. Wang Y et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007

    Article  CAS  Google Scholar 

  43. Hickner MA et al (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612

    Article  CAS  Google Scholar 

  44. Macauley N et al (2015) Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability. J Power Sources 299:139–148

    Article  CAS  Google Scholar 

  45. Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843

    Article  CAS  Google Scholar 

  46. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979

    Article  CAS  Google Scholar 

  47. Thiam HS et al (2011) Overview on nanostructured membrane in fuel cell applications. Int J Hydrogen Energy 36(4):3187–3205

    Article  CAS  Google Scholar 

  48. Gourdoupi N et al (2008) New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties. Fuel Cells 8(3–4):200–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by University of Malaya under the Equitable Society Research Cluster (ESRC) Research Grant GC002A-15SBS and Postgraduate Research Grant PG057-2015B. The authors also thank the Ministry of Higher Education Malaysia for MyBrain 15 Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Ching Juan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amin, I.A., Juan, J.C., Lai, C.W. (2017). An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_12

Download citation

Publish with us

Policies and ethics