Skip to main content

Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells

  • Chapter
  • First Online:
Organic-Inorganic Composite Polymer Electrolyte Membranes
  • 1479 Accesses

Abstract

Literature data on the promotional role of under-rib convection for polymer electrolyte membrane fuel cells (PEMFCs) fueled by hydrogen and methanol are structured and analyzed, with the aim of providing a guide to improve fuel cell performance through the optimization of flow-field interaction. Data are presented for both physical and electrochemical performance showing reactant mass transport, electrochemical reaction, water behavior, and power density enhanced by under-rib convection. Performance improvement studies ranging from single cell to stack are presented for measuring the performance of real operating conditions and large-scale setups. The flow-field optimization techniques by under-rib convection are derived from the collected data over a wide range of experiments and modeling studies with a variety of components including both single cell and stack arrangements. Numerical models for PEMFCs are presented with an emphasis on mass transfer and electrochemical reaction inside the fuel cell. The models are primarily used here as a tool in the parametric analysis of significant design features and to permit the design of the experiment. Enhanced flow-field design that utilizes the promotional role of under-rib convection can contribute to commercializing PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\Delta p_{\text{tot}}\) :

Total pressure drop

z max :

Total length of the path

K ch :

Channel permeability derived from the Hagen–Poiseuille equation

\(\Delta c_{\text{tot}}\) :

Total concentration loss

q rib :

Under-rib convection flowrate

K gdl :

Flow permeability of the GDL

\(\overline{{\dot{v}}}_{\text{spec}}\) :

Mean specific volume flow

\(\dot{V}\) :

Inlet volume flow

\(\dot{V}_{\text{local}}^{\text{meander}}\) :

Integral of the local volume flow (l/h)

\(\overline{{\dot{v}}}_{\text{spec}}^{\text{meander}}\) :

Specific volume flow in the meander channel

\(\overline{{\dot{v}}}_{\text{spec}}^{\text{diff}}\) :

Total specific flow through the diffusion layer

P cell :

Cell output power density

W P :

Pressure drop loss

AFC:

Alkaline fuel cell

BOP:

Balance of plant

CFD:

Computational fluid dynamic

CL:

Catalyst layer

DMFC:

Direct methanol fuel cell

EIS:

Electrochemical impedance spectroscopy

GDL:

Gas diffusion layer

GFF:

Grid flow-field

MCFC:

Molten carbonate fuel cell

MEA:

Membrane electrolyte assembly

MFF:

Original design mixed parallel and serpentine

MPL:

Microporous gas diffusion layer

MSFF:

Multi-serpentine

OCV:

Open-circuit voltages, E0

ORR:

Oxygen reduction reaction

PAFC:

Phosphoric acid fuel cell

PEMFC:

Polymer electrolyte membrane fuel cell

PFF:

Parallel flow-field

PTFE:

Polytetrafluoroethylene

SFF:

Single serpentine

SSFF:

Single serpentine flow-field

SOFC:

Solid oxide fuel cell

VOF:

Volume of fluid

q tot :

Total flow rate

References

  1. Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, London

    Google Scholar 

  2. O’Hayre RP, Cha SW, Colelle W, Prinz FB (2006) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  3. Bose S, Kuila T et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843

    Article  CAS  Google Scholar 

  4. Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1):162–171

    Article  CAS  Google Scholar 

  5. Dohle H, Jung R, Kimiaie N, Mergel J, Müller M (2003) Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells: experiments and simulation studies. J Power Sources 124(2):371–384

    Article  CAS  Google Scholar 

  6. Wilkinson DP, Zhang J, Hui R, Fergus J, Li X (2010) Proton exchange membrane fuel cells: materials properties and performance. In: Lee S (ed) Green chemistry and chemistry engineering. CRC Press, New York

    Google Scholar 

  7. Nguyen TV (1996) A gas distributor design for proton-exchange-membrane fuel cells. J Electrochem Soc 143(5):103–105

    Article  Google Scholar 

  8. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrogen Energy 30(4):359–371

    Article  CAS  Google Scholar 

  9. Zhang L, Bi HT, Wilkinson DP, Stumper J, Wang H (2008) Gas–liquid two-phase flow patterns in parallel channels for fuel cells. J Power Sources 183(2):643–650

    Article  CAS  Google Scholar 

  10. Pharoah JG (2005) On the permeability of gas diffusion media used in PEM fuel cells. J Power Sources 144(1):77–82

    Article  CAS  Google Scholar 

  11. Inoue G, Matsukuma Y, Minemoto M (2006) Effect of gas channel depth on current density distribution of polymer electrolyte fuel cell by numerical analysis including gas flow through gas diffusion layer. J Power Sources 157(1):136–152

    Google Scholar 

  12. Dutta S, Shimpalee S, Van Zee JW (2001) Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int J Heat Mass Transfer 44(11):2029–2042

    Article  CAS  Google Scholar 

  13. Kandlikar SG, Lu Z, Domigan WE, White AD, Benedict MW (2009) Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies. Int J Heat Mass Transfer 52(7):1741–1752

    Article  CAS  Google Scholar 

  14. Williams MV, Kunz HR, Fenton JM (2004) Influence of convection through gas-diffusion layers on limiting current in PEMFCs using a serpentine flow field. J Electrochem Soc 151(10):1617–1627

    Article  CAS  Google Scholar 

  15. Oosthuizen PH, Sun L, McAuley KB (2005) The effect of channel-to-channel gas crossover on the pressure and temperature distribution in PEM fuel cell flow plates. Appl Therm Eng 25(7):1083–1096

    Article  CAS  Google Scholar 

  16. Sun L, Oosthuizen PH, McAuley KB (2006) A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape. Int J Therm Sci 45:1021–1026

    Article  CAS  Google Scholar 

  17. Prasad KBS, Jayanti S (2008) Effect of channel-to-channel cross-flow on local flooding in serpentine flow-fields. J Power Sources 180(1):227–231

    Article  CAS  Google Scholar 

  18. Tehlar D, Flückiger R, Wokaun A, Büchi FN (2010) Investigation of channel-to-channel cross convection in serpentine flow fields. Fuel Cells 10(6):1040–1049

    Google Scholar 

  19. Sun W, Peppley BA, Karan K (2005) Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. J Power Sources 144(1):42–53

    Article  CAS  Google Scholar 

  20. Wang Y, Wang CY (2005) Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. J Power Sources 147(1):148–161

    Article  CAS  Google Scholar 

  21. Kanezaki T, Li X, Baschuk JJ (2006) Cross-leakage flow between adjacent flow channels in PEM fuel cells. J Power Sources 162(1):415–425

    Article  CAS  Google Scholar 

  22. Feser JP, Prasad AK, Advani SG (2006) On the relative influence of convection in serpentine flow fields of PEM fuel cells. J Power Sources 161(1):404–412

    Article  CAS  Google Scholar 

  23. Ye Q, Zhao TS, Xu C (2006) The role of under-rib convection in mass transport of methanol through the serpentine flow field and its neighboring porous layer in a DMFC. Electrochim Acta 51(25):5420–5429

    Article  CAS  Google Scholar 

  24. Park J, Li X (2007) An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel. J Power Sources 163(2):853–863

    Article  CAS  Google Scholar 

  25. Li X, Sabir I, Park J (2007) Review of bipolar plates in PEM fuel cells: flow-field designs. J Power Sources 30(4):359–371

    Google Scholar 

  26. Lee S, Jeong H, Ahn B, Lim T, Son Y (2008) Parametric study of the channel design at the bipolar plate in PEMFC performances. Int J Hydrogen Energy 30(20):5691–5696

    Article  CAS  Google Scholar 

  27. Xu C, He YI, Zhao TS, Chen R, Ye Q (2006) Analysis of mass transport of methanol at the anode of a direct methanol fuel cell. J Electrochem Soc 153(7):1358–1364

    Article  CAS  Google Scholar 

  28. Xu C, Zhao TS (2007) A new flow field design for polymer electrolyte-based fuel cells. Electrochem Commun 9(3):497–503

    Article  CAS  Google Scholar 

  29. Wang XD, Duan YY, Yan WM (2007) Novel serpentine-baffle flow field design for proton exchange membrane fuel cells. J Power Sources 173(1):210–221

    Article  CAS  Google Scholar 

  30. Wang WD, Huang YX, Cheng CH, Jang JY, Lee DJ, Yan WM, Su S (2009) Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths. Electrochim Acta 54(23):5522–5530

    Article  CAS  Google Scholar 

  31. Yang Y, Liang YC (2009) Modelling and analysis of a direct methanol fuel cell with under-rib mass transport and two-phase flow at the anode. J Power Sources 194(2):712–729

    Article  CAS  Google Scholar 

  32. Nam JH, Lee KJ, Sohn S, Kim CJ (2009) Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: design and geometrical characterization. J Power Sources 188(1):14–23

    Article  CAS  Google Scholar 

  33. Wang XD, Duan YY, Yan WM, Lee DJ, Su A, Chi PH (2009) Channel aspect ratio effect for serpentine proton exchange membrane fuel cell: role of sub-rib convection. J Power Sources 193(2):684–690

    Article  CAS  Google Scholar 

  34. Wang XD, Zhang XX, Yan WM, Lee DJ, Su A (2009) Determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs. Int J Hydrogen Energy 34(9):3823–3832

    Article  CAS  Google Scholar 

  35. Wang XD, Huang YX, Cheng CH, Jang JY, Lee DJ, Yan WM, Su A (2010) An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell. Int J Hydrogen Energy 35(9):4247–4257

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang P, Zhenyu Y, He H, Zhao Y, Liu X (2011) A tapered serpentine flow field for the anode of micro direct methanol fuel cells. J Power Sources 196(6):3255–3259

    Article  CAS  Google Scholar 

  37. Baek SM, Koh SG, Kim KN, Kang JH, Nam JH, Kim CH (2011) A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeabilities. J Mech Sci Technol 25(2):457–467

    Article  Google Scholar 

  38. Wang XD, Xu JL, Yan WM, Lee DJ, Su A (2011) Transient response of PEM fuel cells with parallel and interdigitated flow field designs. Int J Heat Mass Transfer 54(11):2375–2386

    Article  CAS  Google Scholar 

  39. Perng SW, Wu HW (2011) Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel. Appl Energy 88(1):52–67

    Article  CAS  Google Scholar 

  40. Suresh PV, Jayanti S, Deshpande AP, Haridoss P (2011) An improved serpentine flow field with enhanced cross-flow for fuel cell applications. Int J Hydrogen Energy 36(10):6067–6072

    Article  CAS  Google Scholar 

  41. Choi KS, Kim HM, Moon SM (2011) Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. Int J Hydrogen Energy 36(2):1613–1627

    Article  CAS  Google Scholar 

  42. Choi KS, Kim HM, Moon SM (2011) An experimental study on the enhancement of the water balance, electrochemical reaction and power density of the polymer electrolyte fuel cell by under-rib convection. Electrochem Commun 13(12):1387–1390

    Article  CAS  Google Scholar 

  43. Costamagna P, Srinvasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sources 102(1):242–252

    Article  CAS  Google Scholar 

  44. Costamagna P, Srinvasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J Power Sources 102(1):253–269

    Article  CAS  Google Scholar 

  45. Gamburzev S, Appleby AJ (2002) Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J Power Sources 107(1):5–12

    Article  CAS  Google Scholar 

  46. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114(1):32–53

    Article  CAS  Google Scholar 

  47. Haraldsson K, Wipke K (2004) Evaluating PEM fuel cell system models. J Power Sources 126(1):88–97

    Article  CAS  Google Scholar 

  48. Yao KZ, Karan K, McAuley KB, Oosthuizen P, Peppley B, Xie T (2004) Review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 4(1):3–29

    Article  CAS  Google Scholar 

  49. Brykoğlu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30(11):1181–1212

    Article  CAS  Google Scholar 

  50. Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147(1):72–84

    Article  CAS  Google Scholar 

  51. Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transfer 48(19):3891–3920

    Article  CAS  Google Scholar 

  52. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrogen Energy 30(12):1297–1302

    Article  CAS  Google Scholar 

  53. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications: a review. J Membr Sci 259(1):10–26

    Article  CAS  Google Scholar 

  54. Pettersson J, Ramsey B, Harrison D (2006) A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J Power Sources 157(1):28–34

    Article  CAS  Google Scholar 

  55. Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell: a review. J Power Sources 163(2):755–767

    Article  CAS  Google Scholar 

  56. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  57. Djilali N (2007) Energy computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32(4):269–280

    Google Scholar 

  58. De Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8(1):3–22

    Article  CAS  Google Scholar 

  59. Siegel C (2008) Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 33(9):1331–1352

    Article  CAS  Google Scholar 

  60. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384

    Article  CAS  Google Scholar 

  61. Antunes RA, Oliveira MCL, Ett G, Ett V (2010) Corrosion of metal bipolar plates for PEM fuel cells: a review. Int J Hydrogen Energy 35(8):3632–3647

    Article  CAS  Google Scholar 

  62. Krivobokov IM, Gribov EN, Qkunev AG (2011) Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells. Electrochim Acta 56(5):2420–2427

    Article  CAS  Google Scholar 

  63. Tsushima S, Hirai S (2011) In situ diagnostics for water transport in proton exchange membrane fuel cells. Prog Energy Combust Sci 37(2):204–220

    Article  CAS  Google Scholar 

  64. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick A (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  CAS  Google Scholar 

  65. Chang JH, Park JH, Park GG, Kim CS, Park OO (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources 127(1):18–25

    Article  CAS  Google Scholar 

  66. Wakizoe M, Velev OA, Srinivasan S (1995) Analysis of proton-exchange membrane fuel-cell performance with alternate membranes. Electrochim Acta 40(3):335–344

    Article  CAS  Google Scholar 

  67. Liu W, Zuckerboard D (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J Electrochem Soc 152(6):1165–1170

    Article  CAS  Google Scholar 

  68. Scherer GG, Bunsen-Ges B (1990) Polymer membranes for fuel cells. Phys Chem 94(9):1008–1014

    CAS  Google Scholar 

  69. Qiao J, Saito M, Hayamizu K, Tokadaz T (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J Electrochem Soc 153(6):967–974

    Article  CAS  Google Scholar 

  70. Teranishi K, Kawata K, Tsushima S, Hirai S (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem Solid-State Lett 9(10):475–477

    Article  CAS  Google Scholar 

  71. Trogadas P, Parrondo J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger. Electrochem Solid-State Lett 11(7):113–116

    Article  CAS  Google Scholar 

  72. Healy J, Hayden C et al (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5(2):302–308

    Google Scholar 

  73. Liu W, Ruth K, Rusch G (2001) Membrane durability in PEM fuel cells. J New Mat Electr sys 4(4):227–232

    CAS  Google Scholar 

  74. Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61(4):680–687

    Article  CAS  Google Scholar 

  75. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1):201–224

    Article  CAS  Google Scholar 

  76. Swette LL, LaConti AB, McCatty SA (1994) Proton-exchange membrane regenerative fuel cells. J Power Sources 47(3):343–351

    Article  CAS  Google Scholar 

  77. Borup R, Meyers J et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Article  CAS  Google Scholar 

  78. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43(1):179–188

    Article  CAS  Google Scholar 

  79. Cai M, Ruthkosky MS et al (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160(2):977–986

    Article  CAS  Google Scholar 

  80. Schulze M, Wagner N, Kaz T, Friedrich KA (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim Acta 52(6):2328–2336

    Article  CAS  Google Scholar 

  81. St-Pierre J, Wilkins DP, Knights S, Bos ML (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J New Mat Electr Syst 3:99–106

    CAS  Google Scholar 

  82. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M (2000) Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 86(1):250–254

    Article  CAS  Google Scholar 

  83. Pasaogullari U, Wang CY (2004) Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim Acta 49(25):4359–4369

    Article  CAS  Google Scholar 

  84. Pasaogullari U, Wang CY, Chen KS (2005) Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media. J Electrochem Soc 152(8):1574–1582

    Article  CAS  Google Scholar 

  85. Weber AZ, Darling RM, Newman J (2004) Modeling two-phase behavior in PEFCs. J Electrochem Soc 151(10):1715–1727

    Article  CAS  Google Scholar 

  86. Weber AZ, Newman J (2005) Effects of microporous layers in polymer electrolyte fuel cells. J Electrochem Soc 152(4):677–688

    Article  CAS  Google Scholar 

  87. Lee C, Mérida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164(1):141–153

    Google Scholar 

  88. Raistrick ID (1990) Impedance studies of porous electrodes. Electrochim Acta 35(10):1579–1586

    Article  CAS  Google Scholar 

  89. Dhar HP (1997) Study of combined electroreflectance and double layer effects at lead electrodes. Surf Sci 66(2):449–462

    Article  Google Scholar 

  90. Gottesfeld S, Zawodzinski TA (1997) In polymer electrolyte fuel cells. Wiley, Weinheim

    Book  Google Scholar 

  91. Tsuchiya H, Kobayashi O (2004) Mass production cost of PEM fuel cell by learning curve. Int J Hydrogen Energy 29(10):985–990

    Article  CAS  Google Scholar 

  92. Cooper JS (2004) Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact. J Power Sources 129(2):152–169

    Article  CAS  Google Scholar 

  93. Müller A, Kauranen P, Von Ganski A, Hell B (2006) Injection moulding of graphite composite bipolar plates. J Power Sources 154(2):467–471

    Article  CAS  Google Scholar 

  94. Maheshwari PH, Mathur RB, Dhami TL (2007) Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications. J Power Sources 173(1):394–403

    Article  CAS  Google Scholar 

  95. Pozio A, Silva RF, Fancesco DM, Giorgi L (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim Acta 48(11):1543–1549

    Article  CAS  Google Scholar 

  96. Wind J, Späh R, Kaiser W, Böhm G (2002) Metallic bipolar plates for PEM fuel cells. J Power Sources 105(2):256–260

    Google Scholar 

  97. Shimpalee S, Ohashi M et al (2009) Experimental and numerical studies of portable PEMFC stack. Electrochim Acta 54(10):2899–2911

    Article  CAS  Google Scholar 

  98. Malkow T, Thalau O et al (2010) PEFC power stack performance testing procedure, test module PEFC ST 5-6. Publications Office of the European Union, Luxembourg

    Google Scholar 

  99. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979

    Article  CAS  Google Scholar 

  100. Rhee CH, Kim HK, Chang H, Lee JS (2005) Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells. Chem Mater 17(7):1691–1697

    Article  CAS  Google Scholar 

  101. Watanabe M, Satoh Y, Shimura C (1993) Management of the water vontent in polymer electrolyte membranes with porous fiber wicks. J Electrochem Soc 140(11):3190–3193

    Article  CAS  Google Scholar 

  102. Miachon S, Aldebert P (1995) Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell. J Power Sources 56(1):31–36

    Article  CAS  Google Scholar 

  103. Choi KS, Kim HM, Yoon YC, Forrest ME, Erickson PA (2008) Effects of ambient temperature and relative humidity on the performance of Nexa fuel cell. Energ Convers Manage 49(12):3505–3511

    Article  Google Scholar 

  104. Kandlikar SG, Lu Z (2009) Thermal management issues in a PEMFC stack—a brief review of current status. Appl Therm Eng 29(7):1276–1280

    Article  CAS  Google Scholar 

  105. Heinzel A, Barragán VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84(1):70–74

    Article  CAS  Google Scholar 

  106. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1):14–31

    Article  CAS  Google Scholar 

  107. Liu L, Pu C, Viswanathan R, Fan Q, Liu L, Smotkin ES (1998) Carbon supported and unsupported Pt–Ru anodes for liquid feed direct methanol fuel cells. Electrochim Acta 43(24):3657–3663

    Article  CAS  Google Scholar 

  108. Page T, Johnson R, Hormes J, Nording S, Rambabu B (2000) A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS. J Electroanal Chem 485(1):34–41

    Article  CAS  Google Scholar 

  109. Ren X, Springer TE, Gottesfeld S (2000) Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc 147(1):92–98

    Article  CAS  Google Scholar 

  110. Baschuk JJ, Li X (2001) Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res 25(8):695–713

    Article  CAS  Google Scholar 

  111. Gang X, Qingfeng L, Hjuler HA, Bjerrum NJ (1995) Hydrogen oxidation on gas diffusion electrodes for phosphoric acid fuel cells in the presence of carbon monoxide and oxygen. J Electrochem Soc 142(9):2890–2893

    Article  Google Scholar 

  112. Doyle M, Rajendran G (2003) Handbook of fuel cells. Wiley, England

    Google Scholar 

  113. Wilkinson DP, Voss HH, Prater K (1994) Water management and stack design for solid polymer fuel cells. J Power Sources 49(1):117–127

    Article  CAS  Google Scholar 

  114. Mosdale R, Srinivasan S (1995) Analysis of performance and of water and thermal management in proton exchange membrane fuel cells. Electrochim Acta 40(4):413–421

    Article  CAS  Google Scholar 

  115. Squadrito G, Barbera O, Giacoppo G, Urbani F, Passalacqua E (2008) Polymer electrolyte fuel cell stack research and development. Int J Hydrogen Energy 33(7):1941–1946

    Article  CAS  Google Scholar 

  116. Zhai Y, Zhang H, Zhang Y, Xing D (2007) A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells. J Power Sources 169(2):259–264

    Article  CAS  Google Scholar 

  117. Zhai Y, Zhang H, Liu G, Hu J, Yi B (2007) Degradation study on MEA in H3PO4∕PBI High-temperature PEMFC life test. J Electrochem Soc 154(1):72–76

    Article  CAS  Google Scholar 

  118. Cleghorn SJC, Mayfield DK et al (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158(1):446–454

    Article  CAS  Google Scholar 

  119. Choi KS, Jang SH, Shin GS, Kim HM, Yoon HC, Forrest ME, Erickson PA (2010) Effects of stack array orientation on fuel cell efficiency for auxiliary power unit applications. Int J Automot Techn 11(3):429–434

    Article  Google Scholar 

  120. Ghosh PC, Wuster T, Dohle H, Kimiaie N, Mergel J, Stolten D (2006) In situ approach for current distribution measurement in fuel cells. J Power Sources 154(1):184–191

    Article  CAS  Google Scholar 

  121. Stumper J, Campbell SA, Wilkinson DP, Johnson MC, Davis M (1998) In-situ methods for the determination of current distributions in PEM fuel cells. Electrochim Acta 43(24):3773–3783

    Article  CAS  Google Scholar 

  122. Hakenjos A, Muenter H, Wittstadt U, Hebling C (2004) A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. J Power Sources 131(1):213–216

    Article  CAS  Google Scholar 

  123. Park K, Kim HK, Choi KS (2013) Numerical and experimental verification of the polymer electrolyte fuel cell performances enhanced by under-rib convection. Fuel Cells 13(5):927–934

    CAS  Google Scholar 

  124. Hogarth WHJ, Steiner J, Benziger JB, Hakenjos A (2007) Spatially-resolved current and impedance analysis of a stirred tank reactor and serpentine fuel cell flow-field at low relative humidity. J Power Sources 164(2):464–471

    Article  CAS  Google Scholar 

  125. Freunberger SA, Reum M, Wokaun A, Büchi FN (2006) Expanding current distribution measurement in PEFCs to sub-millimeter resolution. Electrochem Commun 8(9):1435–1438

    Article  CAS  Google Scholar 

  126. Higier A, Liu H (2010) Optimization of PEM fuel cell flow field via local current density measurement. Int J Hydrogen Energy 35(5):2144–2150

    Article  CAS  Google Scholar 

  127. Alaefour I, Karimi G, Jiao K, Li X (2011) Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements—a parametric study. Appl Energy 93:80–89

    Article  CAS  Google Scholar 

  128. Peng L, Mai J, Hu P, Lai X, Lin Z (2011) Optimum design of the slotted-interdigitated channels flow field for proton exchange membrane fuel cells with consideration of the gas diffusion layer intrusion. Renew Energ 36(5):1413–1420

    Article  CAS  Google Scholar 

  129. Takada K, Ishigami Y et al (2011) Simultaneous visualization of oxygen distribution and water blockages in an operating triple-serpentine polymer electrolyte fuel cell. J Power Sources 196(5):2635–2639

    Article  CAS  Google Scholar 

  130. Ishigami Y, Takada K et al (2011) Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC-start-up/shut-down simulation. J Power Sources 196(6):3003–3008

    Article  CAS  Google Scholar 

  131. Su Weng FB, Hsu CY, Chen YM (2006) Studies on flooding in PEM fuel cell cathode channels. Int J Hydrogen Energy 31(8):1031–1039

    Article  CAS  Google Scholar 

  132. Ous T, Arcoumanis C (2009) Visualisation of water accumulation in the flow channels of PEMFC under various operating conditions. J Power Sources 187(1):182–189

    Article  CAS  Google Scholar 

  133. Weinmueller C, Tautschnig G, Hotz N, Poulikakos D (2010) A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film. J Power Sources 195(12):3849–3857

    Article  CAS  Google Scholar 

  134. Jiao K, Park JW, Li X (2010) Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell. Appl Energy 87(9):2770–2777

    Article  CAS  Google Scholar 

  135. Zhan Z, Wang C, Fu W, Pan M (2012) Visualization of water transport in a transparent PEMFC. Int J Hydrogen Energy 37(1):1094–1105

    Article  CAS  Google Scholar 

  136. Oliveira VB, Rangel CM, Pinto AMFR (2010) Effect of anode and cathode flow field design on the performance of a direct methanol fuel cell. Chem Eng J 157(1):174–180

    Article  CAS  Google Scholar 

  137. Iranzo A, Muñoz M, Lòpez E, Pino J, Rosa F (2010) Experimental fuel cell performance analysis under different operating conditions and bipolar plate designs. Int J Hydrogen Energy 35(20):11437–11447

    Google Scholar 

  138. Ni HJ, Zhang CJ, Wang XX, Ma SY, Liao P (2010) Performance of special-shaped direct methanol fuel cell with sol–gel flux phase. J Fuel Chem Techno 38(5):604–609

    Article  CAS  Google Scholar 

  139. Kumar A, Reddy RG (2006) Effect of gas flow-field design in the bipolar/end plates on the steady and transient state performance of polymer electrolyte membrane fuel cells. J Power Sources 155(2):264–271

    Article  CAS  Google Scholar 

  140. Chen YS, Peng H (2011) Predicting current density distribution of proton exchange membrane fuel cells with different flow field designs. J Power Sources 196(4):1992–2004

    Article  CAS  Google Scholar 

  141. Yang H, Zhao TS (2005) Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochim Acta 50(16):3243–3252

    Article  CAS  Google Scholar 

  142. Hsieh SS, Her BS (2007) Heat transfer and pressure drop in serpentine μDMFC flow channels. Int J Heat Mass Transfer 50(25):5323–5327

    Article  CAS  Google Scholar 

  143. Lu Y, Reddy RG (2011) Effect of flow fields on the performance of micro-direct methanol fuel cells. Int J Hydrogen Energy 36(1):822–829

    Article  CAS  Google Scholar 

  144. Dokkar B, Settou NE, Imine O, Saifi N, Negrou B, Nemouchi Z (2011) Simulation of species transport and water management in PEM fuel cells. Int J Hydrogen Energy 36(6):4220–4227

    Article  CAS  Google Scholar 

  145. Hsuen HK, Yin KM (2011) A pseudo-phase-equilibrium approach for the calculation of liquid water saturation in the cathode gas diffuser of proton-exchange-membrane fuel cells. Int J Hydrogen Energy 36(9):5487–5499

    Article  CAS  Google Scholar 

  146. Berning T, Odgaard M, Kær SK (2010) A study of multi-phase flow through the cathode side of an interdigitated flow field using a multi-fluid model. J Power Sources 195(15):4842–4852

    Article  CAS  Google Scholar 

  147. Le D, Zhou B (2010) A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack. J Power Sources 195(1):5278–5291

    Article  CAS  Google Scholar 

  148. Hao L, Cheng P (2009) Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J Power Sources 190(2):435–446

    Article  CAS  Google Scholar 

  149. Basu S (2011) A generalized multiphase mixture (M2) model for PEFC flow field design. Int J Hydrogen Energy 36(16):9855–9863

    Article  CAS  Google Scholar 

  150. Anderson R, Wilkinson DP, Bi X, Zhang L (2010) Two-phase flow pressure drop hysteresis in parallel channels of a proton exchange membrane fuel cell. J Power Sources 195(13):4168–4176

    Article  CAS  Google Scholar 

  151. Anderson R, Wilkinson DP, Bi X, Zhang L (2011) Two-phase flow pressure drop hysteresis in an operating proton exchange membrane fuel cell. J Power Sources 196(19):8031–8040

    Article  CAS  Google Scholar 

  152. Xu C, Faghri A (2010) Water transport characteristics in a passive liquid-feed DMFC. Int J Heat Mass Transfer 53(9):1951–1966

    Article  CAS  Google Scholar 

  153. Ko J, Chippar P, Ju H (2010) A one-dimensional, two-phase model for direct methanol fuel cells—Part I: model development and parametric study. Energy 35(5):2149–2159

    Article  CAS  Google Scholar 

  154. Zhou Y, Lin G, Shin AJ, Hu SJ (2009) Multiphysics modeling of assembly pressure effects on proton exchange membrane fuel cell performance. J Fuel Cell Sci Tech 6(1–7)

    Google Scholar 

  155. Zhou P, Wu CW, Ma GJ (2007) Influence of clamping force on the performance of PEMFCs. J Power Sources 163(2):874–881

    Article  CAS  Google Scholar 

  156. Akiki T, Charon W, Iltchev MC, Accary G, Kouta R (2010) Influence of local porosity and local permeability on the performances of a polymer electrolyte membrane fuel cell. J Power Sources 195(16):5258–5268

    Article  CAS  Google Scholar 

  157. Um S, Wang CY (2004) Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J Power Sources 125(1):40–51

    Article  CAS  Google Scholar 

  158. Chippar P, Oh K, Kim WG, Ju HC (2014) Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 39(6):2863–2871

    Article  CAS  Google Scholar 

  159. Kwon J, Kang MS et al (2011) Development of flow field design of polymer electrolyte membrane fuel cell using in-situ impedance spectroscopy. Int J Hydrogen Energy 36(16):9799–9804

    Article  CAS  Google Scholar 

  160. Park YC, Peck DH et al (2011) Operating characteristics and performance stability of 5 W class direct methanol fuel cell stacks with different cathode flow patterns. Int J Hydrogen Energy 36(2):1853–1861

    Article  CAS  Google Scholar 

  161. Wang SJ, Huo WW, Zou ZQ, Qia YJ, Yang H (2011) Computational simulation and experimental evaluation on anodic flow field structures of micro direct methanol fuel cells. Appl Therm Eng 31(14):2877–2884

    Article  CAS  Google Scholar 

  162. Iranzo A, Muñoz M, Pino J, Rosa F (2011) Update on numerical model for the performance prediction of a PEM Fuel Cell. Int J Hydrogen Energy 36(15):9123–9127

    Article  CAS  Google Scholar 

  163. Xu Z, Qi Z, He C, Kaufman A (2006) Combined activation methods for proton-exchange membrane fuel cells. J Power Sources 156(2):315–320

    Article  CAS  Google Scholar 

  164. Choi KS, Kim BG, Park K, Kim HM (2012) Flow control of under-rib convection enhancing the performance of proton exchange membrane fuel cell. Comput Fluids 69:81–92

    Article  CAS  Google Scholar 

  165. Vinh ND, Kim HM et al (2015) Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells. J Power Sources 293:447–457

    Article  CAS  Google Scholar 

  166. Radhakrishnan V, Haridoss P (2011) Effect of GDL compression on pressure drop and pressure distribution in PEMFC flow field. Int J Hydrogen Energy 36(12):14823–14828

    Article  CAS  Google Scholar 

  167. Hutzenlaub T, Paust N, Zengerle R, Ziegler C (2011) The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells. J Power Sources 196(19):8048–8056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Man Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, HM., Nguyen, V.D. (2017). Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_10

Download citation

Publish with us

Policies and ethics