Skip to main content

Learning Optimal Spatial Scales for Cardiac Strain Analysis Using a Motion Atlas

  • Conference paper
  • First Online:
  • 808 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

Abstract

Cardiac motion is inherently tied to the disease state of the heart, and as such can be used to identify the presence and extent of different cardiac pathologies. Abnormal cardiac motion can manifest at different spatial scales of the myocardium depending on the disease present. The importance of spatial scale in the analysis of cardiac motion has not previously been explicitly investigated. In this paper, a novel approach is presented for analysing myocardial strains at different spatial scales using a cardiac motion atlas to find the optimal scales for (1) predicting response to cardiac resynchronisation therapy and (2) identifying the presence of strict left bundle-branch block in a patient cohort of 34. Optimal spatial scales for the two applications were found to be \(4\%\) and \(16\%\) of left ventricular volume with accuracies of \(84.8 \pm 8.4\%\) and \(81.3 \pm 12.6\%\), respectively, using a repeated, stratified cross-validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, W., et al.: Beyond the AHA 17-Segment model: motion-driven parcellation of the left ventricle. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2015. LNCS, vol. 9534, pp. 13–20. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28712-6_2

    Chapter  Google Scholar 

  2. Bai, W., Shi, W., et al.: A cardiac atlas built from high resolution MR images of 1000 + normal subjects and atlas-based analysis of cardiac shape and motion. Med. Image Anal. 26(1), 133–145 (2015)

    Article  Google Scholar 

  3. Bassingthwaighte, J., van Beek, J.: Lightning and the heart: fractal behavior in cardiac function. Proc. IEEE 76(6), 693–699 (2002)

    Article  Google Scholar 

  4. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  5. Camici, P., Crea, F.: Coronary microvascular dysfunction. N. Engl. J. Med. 356(8), 830–40 (2007)

    Article  Google Scholar 

  6. De Craene, M., Duchateau, N., et al.: SPM to the heart: Mapping of 4D continuous velocities for motion abnormality quantification. In: Proceedings-International Symposium on Biomedical Imaging, pp. 454–457 (2012)

    Google Scholar 

  7. Duchateau, N., De Craene, M., et al.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16(8), 1532–1549 (2012)

    Article  Google Scholar 

  8. Duchateau, N., Sermesant, M.: Prediction of infarct localization from myocardial deformation. In: STACOM, vol. 9534, pp. 51–59 (2015)

    Google Scholar 

  9. Gotte, M., Germans, T., et al.: Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J. Am. Coll. Cardiol. 48(10), 2002–2011 (2006)

    Article  Google Scholar 

  10. Jackson, T., Sohal, M., et al.: A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm 11(10), 1790–1797 (2014)

    Article  Google Scholar 

  11. Kirk, J., Kass, D.: Electromechanical dyssynchrony and resynchronization of the failing heart. Circ. Res. 113(6), 765–776 (2013)

    Article  Google Scholar 

  12. Marxen, M., Sled, J., Henkelman, R.: Volume ordering for analysis and modeling of vascular systems. Ann. Biomed. Eng. 37(3), 542–551 (2009)

    Article  Google Scholar 

  13. Peressutti, D., Bai, W., Jackson, T., Sohal, M., Rinaldi, A., Rueckert, D., King, A.: Prospective identification of CRT super responders using a motion atlas and random projection ensemble learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 493–500. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_59

    Chapter  Google Scholar 

  14. Peressutti, D., Bai, W., Shi, W., Tobon-Gomez, C., Jackson, T., Sohal, M., Rinaldi, A., Rueckert, D., King, A.: Towards left ventricular scar localisation using local motion descriptors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2015. LNCS, vol. 9534, pp. 30–39. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28712-6_4

    Chapter  Google Scholar 

  15. Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005). doi:10.1007/11566489_50

    Chapter  Google Scholar 

  16. Rueckert, D., Sonoda, L., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  17. Sinclair, M., Lee, J., et al.: Microsphere skimming in the porcine coronary arteries: Implications for flow quantification. Microvasc. Res. 100, 59–70 (2015)

    Article  Google Scholar 

  18. Sohal, M., Duckett, S., et al.: A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy. J. Cardiovasc. Magn. Reson. 16, 58 (2014)

    Article  Google Scholar 

  19. Tian, Y., Zhang, P., et al.: True complete left bundle branch block morphology strongly predicts good response to cardiac resynchronization therapy. Europace 15(10), 1499–1506 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sinclair, M. et al. (2017). Learning Optimal Spatial Scales for Cardiac Strain Analysis Using a Motion Atlas. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics