Skip to main content

Novel Framework to Integrate Real-Time MR-Guided EP Data with T1 Mapping-Based Computational Heart Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

Abstract

Real-time MRI-guided electrophysiology (EP) interventions hold the potential to replace conventional X-ray guided procedures aimed to eliminate potentially lethal scar-related arrhythmia. Furthermore, although cardiac MR can provide excellent structural information (i.e., anatomy and scar), these catheter-based procedures have limited electrical information due to sparse electrical maps recorded from endocardial surfaces. In this paper, we propose a novel framework to augment such sparse electrical maps with 3D transmural electrical wave propagation obtained non-invasively using computer modelling. First, we performed real-time MR-guided EP studies using a preclinical pig model (i.e., in 1 healthy and 2 chronically infarcted animals). Specifically, the MR scans employed 2D T1-mapping (1 × 1 × 5 mm spatial resolution) based on a multi-contrast late enhancement method. For the EP studies we used an MR-compatible system (Imricor). Second, the stacks of resulting segmented images were used to build 3D heart models with various zones (i.e., healthy, scar and gray zone). Lastly, the 3D heart models were coupled with simple monodomain reaction-diffusion equations (e.g. eikonal and Aliev-Panfilov). Our simulations showed that these mathematical formalisms are advantageous due to fast computations, allowing us to predict the electrical wave propagation through dense LV meshes (e.g. >100 K elements, element size ~1.5 mm) in <3 min on a consumer computer. Overall, preliminary results demonstrated that the 3D MCLE-based models predicted close activation times and patterns compared to our measured EP maps, while also providing 3D transmural information and a precise location of the infarction. Future work will focus on calibrating directly (in near real-time) T1-based personalized heart models from electrical maps obtained during real-time MR-guided EP mapping procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stevenson, W.G.: Ventricular scars and VT tachycardia. Trans. Am. Clin. Assoc. 120, 403–412 (2009)

    Google Scholar 

  2. Bello, D., Fieno, D.S., Kim, R.J., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. College Cardiol. 45(7), 1104–1108 (2005)

    Article  Google Scholar 

  3. Codreanu, A., Odille, F., et al.: Electro-anatomic characterization of post-infarct scars comparison with 3D myocardial scar reconstruction based on MRI. J. Am. Coll. Cardiol. 52, 839–842 (2008)

    Article  Google Scholar 

  4. Wijnmaalen, A., van der Geest, R., van Huls van Taxis, C., Siebelink, H., Kroft, L., Bax, J., Reiber, J., Schalij, M., et al.: Head-to-head comparison of c-e MRI and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with VT: real-time image integration and reversed registration. Eur. Heart J. 32, 104 (2011)

    Article  Google Scholar 

  5. Lardo, A.C., McVeigh, E.R., et al.: Visualization and temporal/spatial characterization of cardiac RF ablation lesions using MRI. Circulation 102(6), 698–705 (2000)

    Article  Google Scholar 

  6. Oduneye, S.O., Biswas, L., Ghate, S., Ramanan, V., Barry, J., Laish-Farkash, A., Kadmon, E., Zeidan Shwiri, T., Crystal, E., Wright, G.A.: The feasibility of endocardial propagation mapping using MR guidance in a swine model and comparison with standard electro-anatomical mapping. IEEE Trans. Med. Imaging 31(4), 977–983 (2012)

    Article  Google Scholar 

  7. Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr. Biophys. Mol. Biol. Rev. 96(1–3), 19–43 (2008)

    Article  Google Scholar 

  8. Pop, M., Ramanan, V., Yang, F., Zhang, L., Newbigging, S., Wright, G.: High resolution 3D T1* mapping and quantitative image analysis of the gray zone in chronic fibrosis. IEEE Trans. Biomed. Eng. 61(12), 2930–2938 (2014)

    Article  Google Scholar 

  9. Pop, M., Sermesant, M., Flor, R., Pierre, C., Mansi, T., Oduneye, S., Barry, J., Coudiere, Y., Crystal, E., Ayache, N., Wright, Graham, A.: In vivo contact EP data and ex vivo MR-based computer models: registration and model-dependent errors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 364–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36961-2_41

    Chapter  Google Scholar 

  10. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulations. IEEE Trans. Med. Imaging 25(5), 612–625 (2006)

    Article  Google Scholar 

  11. Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  12. Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)

    Article  Google Scholar 

  13. Keener, J.P., Sneeyd, J.: Mathematical Physiology. Spinger, New York (1998)

    MATH  Google Scholar 

  14. Talbot, H., Duriez, C., Courtecuisse, H., Relan, J., Sermesant, M., Cotin, S., Delingette, H.: Towards real-time computation of cardiac electrophysiology for training simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 298–306. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36961-2_34

    Chapter  Google Scholar 

  15. Chinchapatnam, P., Rhode, K.S., Ginks, M., et al.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)

    Article  Google Scholar 

  16. Li, Z., Athavale, P., Pop, M., Wright, G.A.: Multi-contrast reconstruction using compressed sensing with low rank and spatially-varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction. Magn. Reson. Med. (September 2016, in press (Pubmed)). doi:10.1002/mrm.26402

Download references

Acknowledgement

The authors are grateful for funding and support received from the CIHR, FedDev and Imricor Medical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ferguson, S. et al. (2017). Novel Framework to Integrate Real-Time MR-Guided EP Data with T1 Mapping-Based Computational Heart Models. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics