Skip to main content

Segmentation and Tracking of Myocardial Boundaries Using Dynamic Programming

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

  • 750 Accesses

Abstract

Increasing interest in quantification of local myocardial properties throughout the cardiac cycle from tagged MR (tMR) calls for treatment of the cardiac segmentation problem as a spatio-temporal task. The method presented for myocardial segmentation, uses dynamic programming to choose the optimal contour from a set of possible contours subject to maximizing a cost function. Robust Principle Component Analysis (RPCA) is used to decompose the time series into low rank and sparse components and initialization of the contour is done on the low rank approximation. The 3D nature of the images and tag grid location is incorporated into the cost function to get more robust results. 3D+t segmentation of patient data is achieved by propagating contours spatially and temporally. The method is ideal as a pre-processing step in motion quantification and strain rate mapping algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edvardsen, T., Gerber, B.L., Garot, J., Bluemke, D.A., Lima, J.A., Smiseth, O.A.: Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106(1), 50–56 (2002). doi:10.1161/01.CIR.0000019907.77526.75. http://circ.ahajournals.org/content/106/1/50.abstract

    Article  Google Scholar 

  3. Guttman, M., Prince, J., McVeigh, E.: Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans. Med. Imaging 13(1), 74–88 (1994). doi:10.1109/42.276146. ISSN 0278-0062

    Article  Google Scholar 

  4. Metaxas, D.N., Axel, L., Qian, Z., Huang, X.: A segmentation and tracking system for 4D cardiac tagged MR images, pp. 1541–1544 (2006)

    Google Scholar 

  5. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. Official J. Soc. Magn. Reson. Med./Soc. Magn. Reson. Med. 42(6), 1048 (1999)

    Article  Google Scholar 

  6. Qian, Z., Metaxas, D.N., Axel, L.: A learning framework for the automatic and accurate segmentation of cardiac tagged MRI images. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 93–102. Springer, Heidelberg (2005). doi:10.1007/11569541_11

    Chapter  Google Scholar 

  7. Tobon-Gomez, C., De Craene, M., Mcleod, K., Tautz, L., Shi, W., Hennemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17(6), 632–648 (2013)

    Article  Google Scholar 

  8. Yang, X., Murase, K.: Tagged cardiac MR image segmentation by contrast enhancement and texture analysis, pp. 4–210 (2009)

    Google Scholar 

  9. Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Shapiro, E.P.: Human heart: tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988). doi:10.1148/radiology.169.1.3420283. http://dx.doi.org/10.1148/radiology.169.1.3420283

    Article  Google Scholar 

  10. Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Stable principal component pursuit. In: IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1518–1522. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapathy Krishnamurthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jacob, A.J., Alex, V., Krishnamurthi, G. (2017). Segmentation and Tracking of Myocardial Boundaries Using Dynamic Programming. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics