Skip to main content

In-Situ, Real Time Diagnostics in the Spray Forming Process

  • Chapter
  • First Online:
Metal Sprays and Spray Deposition

Abstract

The structure and material properties of spray formed products depend directly on the thermal state of the semi-solid droplets before their impact, of the substrate and of the already deposited layer. Monitoring specific droplet properties as i.e. droplet temperature, velocity and size as well as mass and enthalpy fluxes provide a unique tool for optimizing the material properties as well as controlling spraying conditions during deposition (as sketched in Fig. 6.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Q1 is the lower quartile, Q2 is the middle quartile (median) and Q3 is the upper quartile.

References

  1. Krauss, M., Bergmann, D., Fritsching, U., & Bauckhage, K. (2002). In-situ particle temperature, velocity and size measurement in the spray forming process. Materials Science and Engineering A, 326, 154–164.

    Article  Google Scholar 

  2. Bergmann, D., Fritsching, U., & Bauckhage, K. (2000). A mathematical model for cooling and rapid solidification of molten metal droplets. International Journal of Thermal Sciences, 39, 53–62.

    Article  Google Scholar 

  3. Bergmann, D., & Fritsching, U. (2004). Sequential thermal modelling of the spray-forming process. International Journal of Thermal Sciences, 43, 403–415.

    Article  Google Scholar 

  4. Bauckhage, K., Bergmann, D., Tillwick, J. 1999. Die massen- und enthalpiebilanzierung des sprühkegels als kopplung für die modellvorstellung des materialaufbaues in der mix-schicht, Universität Bremen, SFB 372 Kolloquium, No. 4 (pp. 139–170).

    Google Scholar 

  5. Helmersson, G., & Burgdorf, K. (1996). Effects of process parameters on microstructure of gas atomized powder. Scandinavian Journal of Metallurgy, 25, 51–58.

    Google Scholar 

  6. Behulova, M., Moravcik, R., Kusy, M., Caplovic, L., Grgac, P., & Stancek, L. (2001). Influence of atomisation on solidification microstructures in the rapidly solidified powder of the Cr–Mo–V tool steel. Materials Science and Engineering A, 304-306, 540–543.

    Article  Google Scholar 

  7. Jiand, G., Henein, H., & Siegel, M. W. (1990). Overview: Intelligent sensors for atomization. The International Journal of Powder Metallurgy, 26(3), 253–268.

    Google Scholar 

  8. Le, T., Stefaniuk, R., Henein, H., & Huôt, J.-Y. (1999). Measurement and analysis of melt flowrate in gas atomization. International Journal of Powder Metallurgy, 35(1), 51–59.

    Google Scholar 

  9. Jillavenkatesa, A., Dapkunas, S. J., & Lum, L.-S. H. (2001). Particle size characterization. Washington, DC: NIST Special Publication 960-1.

    Google Scholar 

  10. Seaton, C., Henein, H., & Glatz, M. (1987). The atomization of liquid metals using the Coanda effect. Powder Metallurgy, 30, 37.

    Article  Google Scholar 

  11. Henein, H., Meyer, P. L., Holve, D. J., & Kuhni, M. A. (1992). On-line measurement of particle size distribution in zinc atomization. International Journal of Powder Metallurgy, 28, 149–159.

    Google Scholar 

  12. Boyko, C. M., Le, T. H., & Henein, H. (1993). Ensemble and single particle laser probe sizing results for gas atomized zinc powders. Particle and Particle Systems Characterization, 10, 266–270.

    Article  Google Scholar 

  13. Yolken, Y. T., & Birnbaum, G. (1993). Intelligent processing of materials: Technical activities. In Materials science and engineering laboratory. Gaithersburg, MD: NAS-NRC Assessment Panel.

    Google Scholar 

  14. Bauckhage, K., Flögel, H.-H., Fritsching, U., & Hiller, R. (1988). The phase-Doppler-difference method, a new laser-Doppler technique for simultaneous size and velocity measurements, Part 2: Optical particle characteristics as a base for the new diagnostic technique. Particle and Particle Systems Characterization, 5, 66–71.

    Article  Google Scholar 

  15. Ziesenis, J. 2002. Weiterentwicklung der PDA-Meßtechnik zur on-line Prozeßkontrolle beim Sprühkompaktieren, Dissertation, Universität Bremen.

    Google Scholar 

  16. Ziesenis, J., & Bauckhage, K. (2003). Spray forming: Controlling the atomization result with regard to particle properties. Particle and Particle Systems Characterization, 20, 290–297.

    Article  Google Scholar 

  17. Ziesenis, J., & Bauckhage, K. (2002). Absorption and scattering of light by highly concentrated two-phase flows. Particle and Particle Systems Characterization, 19, 195–202.

    Article  Google Scholar 

  18. Tillwick, J., Uhlenwinkel, V., & Bauckhage, K. (1999). Analysis of the spray forming process using backscattering phase-Doppler anemometry. International Journal of Heat and Fluid Flow, 20(5), 530–537.

    Article  Google Scholar 

  19. Wriedt, T., Bauckhage, K., & Schöne, A. (1989). Application of Fourier analysis to phase-Doppler-signals generated by rough metal particles. IEEE Transactions on Instrumentation and Measurement, 38(5), 984–990.

    Article  Google Scholar 

  20. K. Bauckhage, P. Schreckenberg. 1989. Control of powder-metal production. A new application of phase-Doppler-anemometry. In Proceedings of international conference on mechanics of two-phase flows (pp. 1–6). Taipei, Taiwan.

    Google Scholar 

  21. V. Uhlenwinkel, M. Buchholz, C. Kramer, & K. Bauckhage. 1998. Characterization of a free fall atomiser and its influence to the spray forming process. In PM world congress: Thermal spraying/spray forming (pp. 537–542). Granada.

    Google Scholar 

  22. Uhlenwinkel, V., Buchholz, M., & Bauckhage, K. 1999. Particle mass flux in the spray cone of a free fall atomizer. In Proceedings of TMS meeting. San Diego.

    Google Scholar 

  23. ParticlMaster Manual, LaVision GmbH, Göttingen, Germany

    Google Scholar 

  24. Blain, J., Nadeau, F., Pouliot, L.. 1997. An integrated infrared sensor for on-line monitoring of thermally sprayed particles, Canada (pp. 1–6).

    Google Scholar 

  25. Moreau, C., Gougeon, P., Lamontagne, M., Lacasse, V., Vaudreuil, G., & Cielo, P. (1994). On-line control of the spraying process by monitoring the temperature, velocity and trajectory of in flight particles. In Thermal spray conference (pp. 431–437). Boston, MA: ASM.

    Google Scholar 

  26. Pouliot, L., Blain, J., & Nadeau, F. (1998). DPV 2000 reference manual: In flight particle sensor for thermal spraying systems. Québec: Tecnar Automation.

    Google Scholar 

  27. Eckert, R. G., & Goldstein, R. J. (1976). Measurements in heat transfer, University of Minnesota, School of Mechanical and Aerospace Engineering. London: Hemisphere.

    Google Scholar 

  28. Ziesenis J., Tillwick, J., Krauss, M., & Uhlenwinkel, V. 2000. Analysis of molten metal atomization process using modified phase-Doppler-anemometry. In Proceedings of TMS. Nashville, USA, March 12–16.

    Google Scholar 

  29. Krauss, M., Hua, Y., Cui, C., Fritsching, U. 2003. Diagnostic of the mushy zone by in-line measurements and numerical simulations. In Proceedings of Spray Deposition and Melt Atomization SDMA. Bremen, June 22–25.

    Google Scholar 

  30. Tecnar Automation Ltée, DPV-2000 calculation principles, 2011.

    Google Scholar 

  31. TecnarAutomation Ltée, DPV-2000 reference manual, Saint-Bruno, Québec.

    Google Scholar 

  32. Standard test methods for metal powders and powder metallurgy products. Metal Powder Industries Federation. Princeton, NJ, 1993.

    Google Scholar 

  33. Henein, H., Buchoud, V., Schmidt, R., Watt, C., Malakov, D., Gandin, C.-A., et al. (2010). Droplet solidification of impulse atomized Al-0.61Fe and Al-1.9Fe. Canadian Metallurgical Quarterly, 49, 275–292.

    Article  Google Scholar 

  34. Prasad, A., Henein, H., Maire, E., & Gandin, C.-A. (2006). Understanding the rapid solidification of Al-4.3Cu and Al-17Cu using x-ray tomography. Metallurgical and Materials Transactions A, 37, 249–287.

    Article  Google Scholar 

  35. A.-A. Bogno, P. Delshad Khatibi, H. Henein, C.-A. Gandin. 2013. Quantification of primary dendritic and secondary eutectic undercoolings of rapidly solidified Al-Cu droplets. In Materials science and technology symposium: Light metals for transportation. Motreal.

    Google Scholar 

  36. Cui, C., Fritsching, U., Schulz, A., & Li, Q. (2005). Mathematical modeling of spray forming process of tubular preforms. Acta Materialia, 53, 2775–2784.

    Article  Google Scholar 

  37. Fritsching, U. (2004). Spray simulation: Modeling and numerical simulation of sprayforming metals. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  38. Freyberg, A. V., Henein, H., Uhlenwinkel, V., & Buchholz, M. (2003). Droplet solidification and gas-droplet thermal coupling in the atomization of a Cu-6Sn alloy. Metallurgical and Materials Transactions B, 33b, 243–253.

    Article  Google Scholar 

  39. Prasad, A., & Henein, H. (2008). Droplet cooling in atomization sprays. Journal of Materials Science, 43, 5930–5941.

    Article  Google Scholar 

  40. Prasad, A., Mosbah, S., Henein, H., & Gandin, C.-A. (2009). A solidification model for atomization. ISIJ International, 49, 992–999.

    Article  Google Scholar 

  41. Zeoli, S. K. N., & Gu, S. (2008). Numerical modelling of metal droplet cooling and solidification. International Journal of Heat and Mass Transfer, 51, 4121–4131.

    Article  Google Scholar 

  42. Delshad Khatibi, P., Ilbagi, A., Beinker, D., & Henein, H. (2011). In-situ characterization of droplets during free fall in the drop tube-impulse system. Journal of Physics Conference Series, 327, 012014.

    Article  Google Scholar 

  43. Delshad Khatibi, P., Henein, H., & Phillion, A. B. (2013). Microstructural investigation of D2 tool steel during rapid solidification. Powder Metallurgy, 57, 70.

    Article  Google Scholar 

  44. Kurz, W., & Fisher, D. J. (1998). Fundamentals of solidification. Enfield, NH: Enfield Publishing & Distribution Company.

    Google Scholar 

  45. Holman, J. P. (1997). Heat transfer (8th ed.). McGraw Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooya Delshad Khatibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Delshad Khatibi, P., Henein, H., Fritsching, U. (2017). In-Situ, Real Time Diagnostics in the Spray Forming Process. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_6

Download citation

Publish with us

Policies and ethics