Skip to main content

Two Fluid Atomization Fundamentals

  • Chapter
  • First Online:

Abstract

In this chapter we review the major types of atomization process configurations: free-fall gas atomization with an unconfined melt stream and close-coupled gas atomization with controlled melt introduction to an energetic gas flow. Studies will be reported of several types of devices, termed atomization nozzles, which are used to perform two-fluid atomization processes that involve the disintegration of a molten metal by interaction with a high velocity atomization gas. The resulting atomization process is a complex physical phenomena consisting of stages that start with melt stream pre-filming and distribution to the primary atomization zone, where melt sheets or ligaments form and initial droplet breakup (primary atomization) occurs by the interaction of a high density, hot melt with a high velocity (high kinetic energy, but low temperature) atomization gas, typically. Primary atomization is followed in the near-field region by secondary breakup, if a high enough gas velocity and sufficient mismatch velocity with the melt fragments are maintained to cause significant production of further droplets. Thus, the atomization processes described in this chapter essentially involve momentum and heat exchange between gas and melt, while other chapters will discuss the subsequent processes of droplet solidification, droplet-droplet or particle-droplet collisions and other spray phenomena that are important to spray deposition. Primarily, this chapter will deal with our state of understanding of melt breakup physics and the various types of gas atomization nozzles that can be used to generate an atomized molten metal spray.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, I., Terpstra, R., & Figliola, R. (2005). Visualization of enhanced primary atomization for powder size control. In Advances in powder metallurgy and particulate materials (pp. 1–17). Princeton, NJ: Metal Powder Industries Federation.

    Google Scholar 

  2. McHugh, K. M., Lin, Y., Zhou, Y., Johnson, S., Delplanque, J.-P., & Javernia, E. (2008). Microstructure evolution during spray rolling and heat treatment of 2124 Al. Materials Science and Engineering, 477, 26–34.

    Article  Google Scholar 

  3. Fritsching, U. (2004). Spray simulation: Modeling and numerical simulation of sprayforming metals. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  4. Yule, A., & Dunkley, J. (1994). Atomization of melts. Oxford: Clarendon Press.

    Google Scholar 

  5. Fritsching, U., & Bauckhage, K. (1992). Investigations on the atomization of molten metals: The coaxial jet and the gas flow in the nozzle near field. PHOENICS Journal of Computational Fluid Dynamics, 1, 5.

    Google Scholar 

  6. Markus, S., Fritsching, U., & Bauckhage, K. (2002). Jet break up of liquid metals in twin fluid atomization. Materials Science and Engineering: A, 326, 122–133.

    Article  Google Scholar 

  7. Heck, U. (1998). Zur Zerstäubung in Freifalldüsen. Düsseldorf: VDI Verlag.

    Google Scholar 

  8. Lohner, H., Czisch, C., & Fritsching, U. (2003). Impact of gas nozzle arrangement on the flow field of a twin fluid atomizer with external mixing. In International conference on liquid atomization and spray systems. Sorrento, Italy.

    Google Scholar 

  9. Uhlenwinkel, V., Fritsching, U., Bauckhage, K., Urlau U. (1990). Strömungsuntersuchungen im Düsennahbereich einer Zweistoffdüse - Modelluntersuchungen für die Zerstäubung von Metallschmelzen, Chemie Ingenieur Technik – CIT Volume 62, Issue 3, S. 228-229

    Google Scholar 

  10. Czisch, C., Lohner, H., & Fritsching, U. (2004). Einfluss der Gasdüsenanordnung auf den Desintegationsvorgang und das Zerstäubungsergebnis bei der Zweistoff-Zerstäubung. Chemie-Ingenieur-Technik, 76, 754–757.

    Article  Google Scholar 

  11. Heck, U., Fritsching, U., & Bauckhage, K. (2000). Gas-flow effects on twin-fluid atomization of liquid metals. Atomization and Sprays, 10, 25–46.

    Article  Google Scholar 

  12. Wille, R., & Fernholz, H. (1965). Report on the first European mechanics colloquium on the coanda effect. Journal of Fluid Mechanics, 23, 801–819.

    Article  Google Scholar 

  13. Czisch, C., & Fritsching, U. (2008). Atomizer design for viscous-melt atomization. Materials Science and Engineering, 477(1–2), 21–25.

    Article  Google Scholar 

  14. Schwenck, D., Ellendt, N., & Uhlenwinkel, V. (2014). Gas recirculation affects powder quality. In World confress on powder metallurgy and particulate materials (PM2014). Orlando, Florida.

    Google Scholar 

  15. Lawley, A. (1992). Atomization: The production of metal powders (pp. 102–107). Princeton, NJ: MPIF.

    Google Scholar 

  16. Ting, J., Peretti, M. W., & Eisen, W. B. (2000). Control of fine powder production and melt flow rate using gas daynamics. Advances in Powder Metallurgy and Particulate Materials, 2, 27–40.

    Google Scholar 

  17. Mates, S. P., Ridder, S. D., & Biancaniello, F. S. (2000). Comparison of supersonic length and dynamic pressure characteristics of discrete–jet and annular close–coupled nozzles used to produce fine metal powders. In Liquid metal atomization: Fundamentals and practice, TMS annual meeting and symposium (pp. 71–81).

    Google Scholar 

  18. Ting, J., & Anderson, I. E. (2004). A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Materials Science and Engineering, A379, 264–276.

    Article  Google Scholar 

  19. Anderson, I. E., Terpstra, R. L., Cronin, J. A., & Figliola, R. S. (2006). Verification of melt property and closed wake effects on controlled close-coupled gas atomization processes. In Advances in powder metallurgy and particulate materials (pp. 1–16).

    Google Scholar 

  20. Unal, A. (1987). Effects of processing variables on particle size in gas atomization of rapidly solidified aluminium powders. Materials Science and Technology, 3, 1029–1039.

    Article  Google Scholar 

  21. Brandes, E., & Brook, G. (1992). Smithells metals reference book (7th ed.). Oxford: Butterworth Heinemann.

    Google Scholar 

  22. Ingebo, R. D. (1980). Atomizing characteristics of swirl blast fuel injectors. NASA Technical Memorandum 79297. Cleveland, OH: Lewis Research Centre.

    Google Scholar 

  23. Rieken, J., Heidloff, A., & Anderson, I. (2013). Moving towards improved ultra-fine powder production for precursor ODS Fe-based alloys, compiled by D. Christopherson & R. M. Gasior, metal powder. Advances in Powder Metallurgy and Particulate Materials, 2, 11–22.

    Google Scholar 

  24. Anderson, I., Figliola, R., & Morton, H. (1991). Flow mechanisms in high pressure atomization. Materials Science and Engineering, 148, 101–114.

    Article  Google Scholar 

  25. Mullis, A. M., Adkins, N. J., Aslam, Z., McCarthy, I., & Cochrane, R. F. (2008). Close-coupled gas atomization: High-frame rate analysis of spray-cone geometry. International Journal of Powder Metallurgy, 44, 55–64.

    Google Scholar 

  26. Mullis, A. M., McCarthy, I., Cochrane, R., & N. J. Adkins. (2016). Investigation of the pulsation phenomenon in close-coupled atomization, Advanced in powder metallurgy and particulate materials. Princeton, NJ: Metal Powder Industries Federation.

    Google Scholar 

  27. Lefebvre. (1989). Atomization and sprays. New York, NY: Hemisphere.

    Google Scholar 

  28. Anderson, I., Terpstra, L., & Rau, S. (2001). SFB-spray forming kolloquium. In Band 5 (pp. 1–16). Norderstedt: Books on Demand GmbH.

    Google Scholar 

  29. Bauckhage, K., & Fritsching, U. (2000). In K. Cooper, I. Anderson, S. Ridder, & F. Biancaniello (Eds.), Liquid metal atomization: Fundamentals and practice (pp. 23–36). Warrendale, PA: TMS.

    Google Scholar 

  30. Lawley, A. (2000). In I. Anderson & K. P. Cooper (Eds.), Liquid metal atomization: Fundamentals and practice. Warrendale, PA: TMS.

    Google Scholar 

  31. Dunkley, J., & Sheikhaliev, S. (1995). Single fluid atomization of liquid metals. In Proceedings of the international conference on powder metallurgy and particulate materials (Vol. 1, pp. 79–87). Seattle, USA.

    Google Scholar 

  32. Achelis, L. (2009). Kombinierte Drall-Druck-Gaszerstäubung von Metallschmelzen. Aachen: Shaker Verlag.

    Google Scholar 

  33. Uhlenwinkel, V. (2002). Patent Nr. 10237213

    Google Scholar 

  34. Lagutkin, S. (2003). Development of technology and equipment for metal powder production by centrifugal-gas atomization of melt. Ekaterinburg: Ural Department of Academy of Sciences.

    Google Scholar 

  35. Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., & Srivastava, V. (2004). Atomization process for metal powder. Materials Science and Engineering: A, 383, 1–6.

    Article  Google Scholar 

  36. Achelis, L., & Uhlenwinkel, V. (2007). Characterisation of metal powders generated by a pressure-gas-atomize. Materials Science and Engineering A, 477(1–2), 15–20.

    Google Scholar 

  37. Achelis, L., Uhlenwinkel, V., Lagutkin, S., & Sheikhaliev, S. (2007). Atomization using a pressure-gas-atomizer. Materials Science Forum, 534–536, 13–16.

    Article  Google Scholar 

  38. Achelis, L., Sulatycki, K., Uhlenwinkel, V., & Mädler, L. (2010). Spray angle and particle size in the pressure gas atomization of tin and tin-copper alloys. In Proceeding of the international conference on powder metallurgy. Florence, Italy.

    Google Scholar 

  39. Achelis, L., Uhlenwinkel, V., Sulatycki, K., & Mädler, L. (2010). New approach to generate composite particles. In Proceeding of the international conference on powder metallurgy and particulate materials (pp. 1–11). Florida, USA.

    Google Scholar 

  40. Fraser, R., & Eisenklam, P. (1953). Research into the performance of atomization of liquids. Imperial ChemEngSoc, 7, 52.

    Google Scholar 

  41. Li, X. (2014). Modeling and simulation of the gas-atomization process of metal melts for metal-matrix-composite production. Aachen: Shaker Verlag.

    Google Scholar 

  42. Lohner, H. (2002). Zerstäuben von Mineralschmelzen mit Heißgas. PhD. thesis, University Bremen.

    Google Scholar 

  43. Czisch, C., Lohner, H., Fritsching, U., Bauckhage, K., & Edlinger, A. (2003). Atomisation process for metal powder. In K. Bauckhage, U. Fritsching, J. Ziesenis, A. Uhlenwinkel, A. Leatham (Eds.), Proceedings on Spray Deposition and Melt Atomization Conference SDMA 2003, Bremen, 22–25 June 2003.

    Google Scholar 

  44. Strauss, J.T. (1999). Hotter gas increases atomization efficiency. Metal Powder Report, 11, 24–28.

    Google Scholar 

  45. Dunkley J.J. (2001). In 2001 International Conference on Powder Metallurgy and Particulate Materials PM2TEC 01, 2-29-2-35, 2001, Metal Powder Industries Federation, Princeton, USA.

    Google Scholar 

  46. Fraser, R.P., Dombrowski, N., & Routley, J.H. (1962). Chemical Engineering Science, 18, 339–353.

    Google Scholar 

  47. Pickering, S.J., Hay, N., Roylance, T.F., & Thomas, G.H. (1985). Ironmaking and Steelmaking, 12(1).

    Google Scholar 

  48. Campanile, F., & Azzopardi, B.J. (2003). In Cavaliere, A. (Ed.), CD-ROM Proceedings of International Conference on Liquid Atomization and Spray Systems ICLASS 2003, Sorrento, Italy, 13-17.07.2003, ILASS-Europe.

    Google Scholar 

  49. Fritsching, U., & Bauckhage, K. (2006). Sprayforming of metals. In Ullmann’s encyclopedia of industrial chemistry (Vol. 7). Weinheim: Wiley VCH.

    Google Scholar 

  50. Lohner, H., Czisch, C., Schreckenberg, P., Fritsching, U., & Bauckhage, K. (2005). Atomization of viscous melts. Atomization and Sprays, 15(2), 169–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iver E. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, I.E., Achelis, L. (2017). Two Fluid Atomization Fundamentals. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_3

Download citation

Publish with us

Policies and ethics