Skip to main content

Spray Forming of Copper Alloys

  • Chapter
  • First Online:
Metal Sprays and Spray Deposition

Abstract

Spray forming as a process innovation in the copper industry has opened the door to several cutting-edge technologies for copper alloys. Indeed, spray-formed copper alloys have become “mature” materials within the last two decades and have seen industrial applications in several major key production technologies of the twenty first century. In several fields they have become competitors to classical engineering materials such as steel due to their homogeneous and tailored microstructure allowing production of complex alloy systems with a good combination of strength, ductility, workability and physical properties.

This contribution presents an overview on production, microstructure, properties, applications and quality-control of industrially relevant spray-formed copper alloys. In particular, spray-formed tin bronzes as pre-materials for low-temperature superconductors, copper-manganese-nickel for the oil drilling industry, high strength aluminium bronzes as cold working tools and finally copper-nickel-silicon as a replacement for copper-beryllium are discussed in detail. Furthermore, the potential of modified spray forming (e.g. reactive spraying, injection of a second component) as a shaping method for copper-containing composite materials is outlined briefly. Finally, the effect of process parameters during spray forming is discussed and typical quality issues such as cracks, porosity, and segregation are taken into account and assessed critically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrmann, E. (1958). Handbuch des Stranggießens. Düsseldorf: Aluminium-Verlag, Fig. 361.

    Google Scholar 

  2. Singer, A. R. E. (1970). The principles of spray rolling of metals. Metals and Materials4, 246–257.

    Google Scholar 

  3. Cramb, A. W. (1988). New steel casting processes for thin slabs and strip–a historical perspective. Iron and Steelmaker, 15, 45–60.

    Google Scholar 

  4. Müller, H. R., & Zauter, R. (2003). Spray-formed copper alloys–process and industrial applications. Erzmetall, 56(11), 643–650.

    Google Scholar 

  5. Zauter, R., Mueller, H. R., & Kudashov, D. (2006). Spray-formed high-tin bronze—a homogeneous prematerial for Nb3Sn-based superconductor wire. Vortrag ASC 2006 Conference in Seattle, Washington, August 27–September 1, 2006.

    Google Scholar 

  6. Zauter, R., Ohla, K., Müller, H.R., & Maier, J.. (2003). Spray-formed materials for low temperature superconductors. Proceedings of the 5th International Conference on Spray Forming (SDMA 2003 /ICSF V) (pp. 5–122). Bremen: Universität Bremen. ISBN 3-8330-0571-8.

    Google Scholar 

  7. Hummert, K., Müller, H. R., & Spiegelhauer, C. (2003). Spray forming. In Landolt-Börnstein, group VIII: advanced materials and technologies (Vol. 2, pp. 4-43–4-61). Berlin: Springer ISBN 3-540-42942-5.

    Google Scholar 

  8. Abächerli, V. (2005). Improvement of workability and superconducting properties of high tin content (Nb, Ta, Ti)3Sn bronze route wires. Doctorate Thesis at the Université de Genève, Switzerland.

    Google Scholar 

  9. Dies, K. (1961). Mangan-Bronze. Metall, 15(12), 1161–1172.

    Google Scholar 

  10. Rabald, E. (1958). Die Aluminiumbronzen. Fachbuch. Berlin: Deutsches Kupfer-Institut.

    Google Scholar 

  11. Meigh, H. (2000). Cast and wrought aluminium bronzes. University Press, Cambridge.

    Google Scholar 

  12. Brezina, P. (1982). International Metals Reviews, 27, 77–120.

    Article  Google Scholar 

  13. Hasan, F., Igbal, J., & Ridley, N. (1985). Materials Science and Technology, 1, 312–314.

    Article  Google Scholar 

  14. Dies, K., Heubner, U., König, W. J., & Wincierz, P. (1965). Zeitschrift fuer Metallkunde, 56.

    Google Scholar 

  15. Benkißer, G., & Horn-Samodelkin, G. (1993). Metall, 47, 1033–1037.

    Google Scholar 

  16. Stenger, H. (1969). Metall, 23, 431–443.

    Google Scholar 

  17. Cook, M., Fentiman, W. P., & Davis, E. (1951/1952). Journal of the Institute of Metals, 80, 419–429.

    Google Scholar 

  18. Macken, P. J., & Smith, A. A. (1966). The aluminium bronzes. UK: CDA.

    Google Scholar 

  19. Roucka, J., Macasek, I., Rusin, K., & Svejcar, J. (1983). Possibilities of applying aluminium bronze in the production of cast tools for sheet drawing. Solidification technology in the foundry and casthouse. The Metals Society, 392–397.

    Google Scholar 

  20. Glas, F. (2005). Tribologie und Schmierungstechnik, 52, 55–63.

    Google Scholar 

  21. Klement, J. F. (1961). US Patent 2,979,397.

    Google Scholar 

  22. Kudashov, D. V., Zauter, R., & Müller, H. R. (2008). Spray-formed high-aluminium bronzes. Materials Science and Engineering A, 477, 43–49.

    Article  Google Scholar 

  23. Yutaka, A. (1941). Nippon Kinzoky. Gakkai-Si, 5, 136–155.

    Google Scholar 

  24. Dies, K., & König, W. J. (1960). Metall, 14, 1085–1093.

    Google Scholar 

  25. Köstner, W., & Rauscher, W. (1948). Zeitschrift fuer Metallkunde, 39, 11–120.

    Google Scholar 

  26. Villasenor, C.T., & Radcliffe, S.V. (1974). INCRA Report No. 167, pp. 18–32.

    Google Scholar 

  27. Kuhn, H.-A., Altenberger, I., Riedle, J., & Hölzl, H. (2013). Microstructure and mechanical properties of ultra fine grained high performance copper alloys. Proceedings Copper 2013 (pp. 129–138). Santiago: Chilean Institute of Mining Engineers.

    Google Scholar 

  28. Altenberger, I., Kuhn, H.-A., Gholami, M., Mhaede, M., & Wagner, L. (2014). Characterization of ultra-fine-grained Cu-Ni-Si alloys by electron backscatter diffraction (EBSD). IOP Conference Series: Materials Science and Engineering, 63, 012135.

    Article  Google Scholar 

  29. Altenberger, I., Kuhn, H.-A., Müller, H. R., Mhaede, M., Gholami-Kermanshahi, M., & Wagner, L. (2015). Material properties of high-strength-beryllium-free copper alloys. International Journal of Materials and Product Technology, 50, 124–146.

    Article  Google Scholar 

  30. Müller, H.R. (1996). SFB Kolloquium, Bremen, Band 1 (pp. 33–41). Bremen: Universität Bremen. ISBN 3-88722-363-2.

    Google Scholar 

  31. Füller, K.-H., & Stock, D. (1995). Metall, 49, 274–277.

    Google Scholar 

  32. Ohla, K., Müller, H. R., & Riedle, J. (2000). Principle considerations for the production of dispersion strengthened copper. SDMA (Spray Deposition and Melt Atomization) Proceedings of the International Conference on Spray Deposition and Melt Atomization Vol. 1 (pp. 181–190). Bremen: Deutsche Forschungsgemeinschaft.

    Google Scholar 

  33. Perez, J. F., & Morris, D. G. (1994). Scripta Metallurgica et Materialia, 31(3), 231–235.

    Article  Google Scholar 

  34. Liang, X., Earthman, J. C., & Lavernia, E. J. (1992). Acta Metallurgical and Materials Transactions, 40, 3003.

    Article  Google Scholar 

  35. Osamura, K. (2005). Role of copper and copper alloys in advanced composite superconductors. Department of Materials Science and Engineering, Kyoto University, IWCC Technical Seminar, Tokyo, Nov 2005.

    Google Scholar 

  36. Altenberger, I., Müller, H. R., & Zauter, R. (2010). Spray-formed copper alloys have become mature. Proceedings Copper 2010, Vol. 1 (pp. S3–S12). Hamburg: GDMB Informationsgesellschaft mbH. ISBN 978-3-940276-25-4.

    Google Scholar 

  37. Altenberger, I. , Müller, H.R., Zauter, R., & Kudashov, D.V. (2009). Microstructures of spray-formed copper alloys. Proceedings of the 7th International Conference on Spray Forming, Bremen, Germany.

    Google Scholar 

  38. Shapiro, S., Tyler, D.E., & Lanam, R. (1972). Phenomenology of Precipitation in Copper-20%-Nickel-20%-Manganese, In: Proc. CDA-ASM Conference on Copper, Oct. 16-19, Cleveland, Ohio (USA).

    Google Scholar 

  39. Voßkühler, H. (1949). Beitrag zur Frage der umgekehrten Blockseigerung bei Aluminium-Kupfer-Magnesium-Legierungen. Zeitschrift fuer Metallkunde, 40(8), 305–311.

    Google Scholar 

  40. Roth, W. (1949). Stranggießen von Leichtmetall nach dem Wassergießverfahren. Zeitschrift fuer Metallkunde, 40(12), 445–460.

    Google Scholar 

  41. Kästner, H. (1950). Die umgekehrte Blockseigerung bei Stranggguß I. Zeitschrift fuer Metallkunde, 41(8), 193–205.

    Google Scholar 

  42. Kästner, H. (1950). Die umgekehrte Blockseigerung bei Stranggguß II. Zeitschrift fuer Metallkunde, 41(8), 247–254.

    Google Scholar 

  43. Ohm, L., & Engler, S. (1989). Treibende Kräfte der Oberflächenseigerungen beim NE-Strangguß. Metall, 43(4), 520–524.

    Google Scholar 

  44. Schröder, R., & Uhlenwinkel, V. (2000). Persönliche Information. Bremen: IWT Stiftung Institut Werkstofftechnik.

    Google Scholar 

  45. Hansmann S., & Müller, H.R. (1999). Hochzinnhaltige Bronzen mittels Sprühkompaktieren seigerungsarm hergestellt. SFB 372 Kolloquium Band 4 (pp. 1–6). Bremen: Universität Bremen. ISBN 3–88722-440-X.

    Google Scholar 

  46. Müller, H. R., Ohla, K., Zauter, R., & Ebner, M. (2004). Effect of reactive elements on porosity in spray-formed copper-alloy Billets. Materials Science and Engineering A, 383, 78–86.

    Article  Google Scholar 

  47. Watson, G. (1990). Thermal and microstructural characterization of spray cast copper alloy strip. Proceedings of the First International Conference on Spray Forming, 17–19 Sept 1990, Swansea, UK.

    Google Scholar 

  48. Watson, W.G., Ashok, S., & Cheskis, H.P. (1990). Method to reduce porosity in a spray cast deposit. U.S. Patent No. 4,961,457, 9 Oct 1990.

    Google Scholar 

  49. Cookey, R.H., & Wood, J.V. (1990). Production and development of copper-base alloys by the osprey process. Proceedings of the First International Conference on Spray Forming, 17–19 Sept 1990, Swansea, UK.

    Google Scholar 

  50. Mathei-Schulz, E., Schulz, A., & Mayer, P. (2001). Gefügeauswertung an sprühkompaktierten Werkstoffen mit bildanalytischen Methoden. Kolloquiumsband Sprühkompaktieren, Band 5 (pp. 179–191). Bremen: Universität Bremen.

    Google Scholar 

  51. Müller, H.R., Hansmann, S., & Ohla, K. (2000). Influence of process parameters on segregation and porosity in spray-formed Cu-Sn-billets. Spray Deposition and Melt Atomization Conference (pp. 205–218). Bremen: Universität Bremen.

    Google Scholar 

  52. Doherty, R., Annavarapu, S., Cai, C., & Kohler, K. (1997). Modelling based studies for control and microstructure development in spray forming. Kolloquiumsband Sprühkompaktieren, Band 2 (pp. 45–78). Bremen: Universität Bremen.

    Google Scholar 

  53. Ebner, M. (2002). Nachweis von TiN-phasen im sprühkompaktierten Material BC1. Interner Laborbericht Nr. 1859 der Wieland-Werke AG, Ulm, 22 Aug 2002.

    Google Scholar 

  54. Roine, A. (1999). Outokumpu HSC chemistry for windows, chemical reaction and equilibrium software with extensive thermochemical database. User’s guide version 4.0 30 Jun. 1999. Helsinki: Outokumpu. ISBN 952-9507-05-4.

    Google Scholar 

  55. Schulz, S. (2001). Aufnahme eines Line-Plots an Ms-Halbzylinder und eines zusätzlichen Musters. Hürth, Germany: Interne Mitteilung Krautkraemer GmbH & Co. oHG.

    Google Scholar 

  56. Heinrich, M. (2002). US-Untersuchung von sprühkompaktiertem Material auf Porosität. Ulm, Germany: Interne Mitteilung Wieland-Werke AG.

    Google Scholar 

  57. Müller, H. R., Heinrich, M., Zauter, R., & Kudashov, D. (2006). Non-destructive testing of spray-formed copper-alloy billets. Vortrag International Conference on Spray Deposition and Melt Atomization (SDMA 2006), 4–6, Sept 2006 Bremen.

    Google Scholar 

  58. DKI (Deutsches Kupferinstitut). (1965). Legierungen des Kupfers mit Zinn, Nickel, Blei und anderen Metallen. Berlin Düsseldorf, 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar R. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Müller, H.R., Altenberger, I. (2017). Spray Forming of Copper Alloys. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_11

Download citation

Publish with us

Policies and ethics