The Complex Systems Approach to Policy Analysis

Part of the SpringerBriefs in Geography book series (BRIEFSGEOGRAPHY)


In this chapter, I reflect on the complex systems approach to policy analysis and discuss how to develop useful, credible agent-based models for policy analysis. The chapter concludes the book with a conjecture about sustainability of complex adaptive systems in general.


Complex adaptive systems Policy analysis Agent-based modeling Niches Resilience Sustainability 


  1. An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring complexity in a human–environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers, 95(1), 54–79.CrossRefGoogle Scholar
  2. An, L., Zvoleff, A., Liu, J., & Axinn, W. (2014). Agent-based modeling in coupled human and natural systems (CHANS): Lessons from a comparative analysis. Annals of the Association of American Geographers, 104(4), 723–745.CrossRefGoogle Scholar
  3. Andrei, A., Comer, K., & Koehler, M. (2014). An agent-based model of network effects on tax compliance and evasion. Journal of Economic Psychology, 40, 119–133.CrossRefGoogle Scholar
  4. Axelrod, R. (1997a). The dissemination of culture a model with local convergence and global polarization. Journal of Conflict Resolution, 41(2), 203–226.CrossRefGoogle Scholar
  5. Axelrod, R. M. (1997b). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton University Press.Google Scholar
  6. Axtell, R. L., & Epstein, J. M. (1994). Agent-based modeling: Understanding our creations. The Bulletin of the Santa Fe Institute, 9(2), 28–32.Google Scholar
  7. Baars, B. J., & Gage, N. M. (2010). Cognition, brain, and consciousness: Introduction to cognitive neuroscience. Burlington: Academic.Google Scholar
  8. Bankes, S. (1993). Exploratory modeling for policy analysis. Operations Research, 41(3), 435–449.CrossRefGoogle Scholar
  9. Barabási, A.-L. (2002). Linked: The new science of networks. Cambridge: Perseus Publishing.Google Scholar
  10. Becker, G. S., & Murphy, K. M. (2009). Social economics: Market behavior in a social environment. Cambridge: Harvard University Press.Google Scholar
  11. Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122–142.CrossRefGoogle Scholar
  12. Berger, T. (2001). Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25(2–3), 245–260.CrossRefGoogle Scholar
  13. Berger, T., Schreinemachers, P., & Woelcke, J. (2006). Multi-agent simulation for the targeting of development policies in less-favored areas. Agricultural Systems, 88(1), 28–43.CrossRefGoogle Scholar
  14. Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). At risk: Natural hazards, people’s vulnerability and disasters. London: Routledge.Google Scholar
  15. Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E., & Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.CrossRefGoogle Scholar
  16. Bramson, A. L. (2009). Formal measures of dynamical properties: Tipping points (AAAI Technical Report FS-09(3), pp. 2–11).Google Scholar
  17. Bramson, A. L. (2010). Formal measures of dynamical properties: Robustness and sustainability (AAAI Technical Report FS-10(3), pp. 16–25).Google Scholar
  18. Brown, D. G., Page, S., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science, 19(2), 153–174.Google Scholar
  19. Brown, D. G., Robinson, D. T., An, L., Nassauer, J. I., Zellner, M., Rand, W., et al. (2008). Exurbia from the bottom-up: Confronting empirical challenges to characterizing a complex system. Geoforum, 39(2), 805–818.CrossRefGoogle Scholar
  20. Castella, J. C., Trung, T. N., & Boissau, S. (2005). Participatory simulation of land-use changes in the northern mountains of Vietnam: The combined use of an agent-based model, a role-playing game, and a geographic information system. Ecology and Society, 10(1), 27.CrossRefGoogle Scholar
  21. Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.CrossRefGoogle Scholar
  22. Cioffi-Revilla, C. (2014). Computation and social science. In Introduction to computational social science (pp. 23–66). London: Springer.Google Scholar
  23. Cioffi-Revilla, C., & Goolsby, R. (2011, September). Advanced modeling capability for rapid disaster response’. Innovation Beyond Imagination, 7, 12–13.Google Scholar
  24. Cotla, C. R. (2016). Heterogeneous preferences and the dynamics of cooperation in networked societies: A dialogue between experimental and computational approaches. PhD dissertation.Google Scholar
  25. Crooks, A. T., & Wise, S. (2013). GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems, 41, 100–111.CrossRefGoogle Scholar
  26. Crooks, A. T., Croitoru, A., Lu, X., Wise, S., Irvine, J., & Stefanidis, A. (2015). Walk this way: Improving pedestrian agent-based models through scene activity analysis. ISPRS International Journal of Geo-Information, 4(3), 1627–1656.CrossRefGoogle Scholar
  27. Deadman, P., Robinson, D., Moran, E., & Brondizio, E. (2004). Colonist household decision making and land-use change in the Amazon Rainforest: An agent-based simulation. Environment and Planning B: Planning and Design, 31(5), 693–709.CrossRefGoogle Scholar
  28. Drogoul, A., Huynh, N. Q., & Truong, Q. C. (2016). Coupling environmental, social and economic models to understand land-use change dynamics in the Mekong Delta. Frontiers in Environmental Science, 4, 19.CrossRefGoogle Scholar
  29. Epstein, J. M. (2014). Agent_Zero: Toward neurocognitive foundations for generative social science. Princeton: Princeton University Press.CrossRefGoogle Scholar
  30. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC: Brookings Institution Press.Google Scholar
  31. Evans, T. P., Phanvilay, K., Fox, J., & Vogler, J. (2011). An agent-based model of agricultural innovation, land-cover change and household inequality: The transition from swidden cultivation to rubber plantations in Laos PDR. Journal of Land Use Science, 6(2–3), 151–173.CrossRefGoogle Scholar
  32. Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685–686.CrossRefGoogle Scholar
  33. Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.CrossRefGoogle Scholar
  34. Gilbert, G. N. (2007). Agent-based models (Vol. 153). Thousand Oaks: Sage.Google Scholar
  35. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.CrossRefGoogle Scholar
  36. Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11(1), 49.CrossRefGoogle Scholar
  37. Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (Eds.). (2012). Agent-based models of geographical systems (pp. 739–748). New York: Springer.CrossRefGoogle Scholar
  38. Hogarth, R. M., & Reder, M. W. (1987). Rational choice: The contrast between economics and psychology. Chicago: University of Chicago Press.Google Scholar
  39. Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Cambridge: Perseus Books.Google Scholar
  40. Holland, J. H. (1998). Emergence: From chaos to order. Cambridge: Perseus Books.Google Scholar
  41. Holland, J. H. (2012). Signals and boundaries: Building blocks for complex adaptive systems. Cambridge: MIT Press.Google Scholar
  42. Holland, J. H. (2014). Complexity: A very short introduction. Oxford: Oxford University Press.Google Scholar
  43. Houser, D., Xiao, E., McCabe, K., & Smith, V. (2008). When punishment fails: Research on sanctions, intentions and non-cooperation. Games and Economic Behavior, 62(2), 509–532.CrossRefGoogle Scholar
  44. Jacob, J. (1961). The death and life of great American cities. New York: Vintage Books.Google Scholar
  45. Janssen, M. A., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(2), 37.CrossRefGoogle Scholar
  46. Kennedy, W. G. (2011). Modelling human behavior in agent-based models. In M. Batty, A. Heppenstall, & A. Crooks (Eds.), Agent-based models of geographical systems, Part 2 (pp. 167–179). New York: Springer.Google Scholar
  47. Kennedy, W. G., Cotla, C. R., Gulden, T. R., Coletti, M., & Cioffi-Revilla, C. (2014). Towards validating a model of households and societies of East Africa. In S. H. Chen, I. Terano, H. Yamamoto, & C. C. Tai (Eds.), Advances in computational social science: The fourth world congress (pp. 315–328). New York: Springer.Google Scholar
  48. Kurzban, R., & Houser, D. (2005). Experiments investigating cooperative types in humans: A complement to evolutionary theory and simulations. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1803–1807.CrossRefGoogle Scholar
  49. LaSalle, J. P., & Lefschetz, S. (1961). Stability by Liapunov’s direct method with applications. New York: Academic Press.Google Scholar
  50. Lempert, R. (2002). Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences, 99(Suppl. 3), 7195–7196.CrossRefGoogle Scholar
  51. Lempert, R. J. (2003). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. Santa Monica: Rand Corporation.Google Scholar
  52. Malanson, G. P., & Walsh, S. J. (2015). Agent-based models: Individuals interacting in space. Applied Geography, 56, 95–98.CrossRefGoogle Scholar
  53. Manson, S. (2006). Land use in the southern Yucatán peninsular region of Mexico: Scenarios of population and institutional change. Computers, Environment and Urban Systems, 30(3), 230–253.CrossRefGoogle Scholar
  54. Manson, S. M., & Evans, T. (2007). Agent-based modeling of deforestation in southern Yucatan, Mexico, and reforestation in the Midwest United States. Proceedings of the National Academy of Sciences, 104(52), 20678–20683.CrossRefGoogle Scholar
  55. Martynyuk, A. A. (1998). Stability by Liapunov’s matrix function method with applications. New York: CRC Press.Google Scholar
  56. Miller, J. H. (1998). Active nonlinear tests (ANTs) of complex simulation models. Management Science, 44(6), 820–830.CrossRefGoogle Scholar
  57. Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton: Princeton University Press.Google Scholar
  58. Mitchell, M. (1992). Complexity: A guided tour. New York: Oxford University Press.Google Scholar
  59. Newman, M. E. J., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton: Princeton University Press.Google Scholar
  60. O’Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., & Bone, C. (2016). Strategic directions for agent-based modeling: Avoiding the YAAWN syndrome. Journal of Land Use Science, 11(2), 177–187.CrossRefGoogle Scholar
  61. Organization for Economic Co-operation and Development (OECD) Global Science Forum. (2009). Report on applications of complexity science for public policy: New tools for finding unanticipated consequences and unrealized opportunities. Retrieved from
  62. Paola, C., & Leeder, M. (2011). Environmental dynamics: Simplicity versus complexity. Nature, 469(7328), 38–39.CrossRefGoogle Scholar
  63. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffman, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93, 314–337.CrossRefGoogle Scholar
  64. Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton: Princeton University Press.Google Scholar
  65. Rand, D. G., Arbesman, S., & Christakis, N. A. (2011). Dynamic social networks promote cooperation in experiments with humans. Proceedings of the National Academy of Sciences, 108(48), 19193–19198.CrossRefGoogle Scholar
  66. Robinson, S. (1997). Simulation model verification and validation: Increasing the users’ confidence. In Proceedings of the 29th Conference on Winter Simulation (pp. 53–59). IEEE Computer Society.Google Scholar
  67. Robinson, D. T., & Brown, D. G. (2009). Evaluating the effects of land-use development policies on ex-urban forest cover: An integrated agent-based GIS approach. International Journal of Geographical Information Science, 23(9), 1211–1232.CrossRefGoogle Scholar
  68. Robinson, D. T., Brown, D. G., Parker, D. C., Schreinemachers, P., Janssen, M. A., Huigen, M., et al. (2007). Comparison of empirical methods for building agent-based models in land use science. Journal of Land Use Science, 2(1), 31–55.CrossRefGoogle Scholar
  69. Schelling, T. C. (1971). Dynamic models of segregation†. Journal of Mathematical Sociology, 1(2), 143–186.CrossRefGoogle Scholar
  70. Schreinemachers, P., & Berger, T. (2006). Land use decisions in developing countries and their representation in multi-agent systems. Journal of Land Use Science, 1(1), 29–44.CrossRefGoogle Scholar
  71. Scott, J. C. (1977). The moral economy of the peasant: Rebellion and subsistence in Southeast Asia. New Haven: Yale University Press.Google Scholar
  72. Sen, A. (1981). Poverty and famines: An essay on entitlement and deprivation. Oxford: Oxford University Press.Google Scholar
  73. Simon, H. A. (1956). Rational choice, and the structure of the environment. Psychological Review, 63, 129–138.CrossRefGoogle Scholar
  74. Smith, V. L. (2005). Bargaining and market behavior: Essays in experimental economics. Cambridge: Cambridge University Press.Google Scholar
  75. Strauss, J., & Thomas, D. (1995). Human resources: Empirical modeling of household and family decisions. In J. Behrman & T. N. Srinivasan (Eds.), Handbook of development economics (Vol. 3, pp. 1885–2023). Amsterdam: North Holland.Google Scholar
  76. Susan, E. (1977). The poverty of revolution: The state and the urban poor in Mexico. Princeton: Princeton University Press.Google Scholar
  77. Torrens, P. M. (2010). Agent-based models and the spatial sciences. Geography Compass, 4(5), 428–448.CrossRefGoogle Scholar
  78. Tversky, A., & Kahneman, D. (1975). Judgment under uncertainty: Heuristics and biases. In D. Wendt & C. Vlek (Eds.), Utility, probability, and human decision making. Dordrecht: Springer.Google Scholar
  79. Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53.CrossRefGoogle Scholar
  80. Van Berkel, D. B., & Verburg, P. H. (2012). Combining exploratory scenarios and participatory backcasting: Using an agent-based model in participatory policy design for a multi-functional landscape. Landscape Ecology, 27(5), 641–658.CrossRefGoogle Scholar
  81. Walsh, S. J., & Mena, C. F. (2016). Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador. Proceedings of the National Academy of Sciences, 113(51), 14536–14543. doi: 10.1073/pnas.1604990113.CrossRefGoogle Scholar
  82. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Computational Social Science Program, Department of Computational and Data Sciences, College of ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations