Skip to main content

NMR of Cuprate Superconductors: Recent Developments

  • Chapter
  • First Online:
High-Tc Copper Oxide Superconductors and Related Novel Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 255))

Abstract

Since the discovery of high-temperature superconductivity in cuprates by Bednorz and Müller, NMR has contributed notably to our view and understanding of cuprate chemistry and physics, of which a brief account is given here. However, recent major insights from NMR that, at least in part, challenge certain views developed in the early years of cuprate research will be our focus: (i) The failure of a single-component spin susceptibility to adequately describe NMR shift data may indicate the presence of more than one electronic fluid. (ii) NMR quadrupole splittings provide a quantitative measure of local charges in the CuO2 plane, and we find unexpectedly large differences between different cuprate families. These local charges, measured with NMR, appear to set the maximum T c , and the superfluid density. A phase diagram using these local Cu and O charges rather than the total doping per CuO2, gives a unified view of all cuprates and further insight can be expected if cuprate properties are discussed in this context. (iii) Based on magnetic field dependent and new pressure dependent NMR experiments, a review of NMR literature data, and the measurability of local charges with NMR, we argue that dynamic charge density variations are likely a universal phenomenon in cuprate superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B Condens. Matter 193, 189 (1986). doi:10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. M. Jurkutat, D. Rybicki, O.P. Sushkov, G.V.M. Williams, A. Erb, J. Haase, Phys. Rev. B 90, 140504 (2014). doi:10.1103/PhysRevB.90.140504

    Article  ADS  Google Scholar 

  3. D. Rybicki, M. Jurkutat, S. Reichardt, C. Kapusta, J. Haase, Nat. Commun. 7, 1 (2016). doi:10.1038/ncomms11413

    Article  Google Scholar 

  4. J. Haase, O.P. Sushkov, P. Horsch, G.V.M. Williams, Phys. Rev. B 69, 94504 (2004). doi:10.1103/PhysRevB.69.094504

    Article  ADS  Google Scholar 

  5. J. Haase, C.P. Slichter, C.T. Milling, J. Supercond. 15, 339 (2002). doi:10.1023/A:1021014028677

    Article  ADS  Google Scholar 

  6. J. Haase, C.P. Slichter, R. Stern, C.T. Milling, D.G. Hinks, in Phase Transitions and Self-Organization in Electronic and Molecular Networks, ed. by M.F. Thorpe, J.C. Phillips (Springer US, Boston, MA, 2001), pp. 413–430. doi:10.1007/0-306-47113-2_27

  7. M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Phys. Rev. B 43, 247 (1991). doi:10.1103/PhysRevB.43.247

    Article  ADS  Google Scholar 

  8. M. Bankay, M. Mali, J. Roos, D. Brinkmann, Phys. Rev. B 50, 6416 (1994). doi:10.1103/PhysRevB.50.6416

    Article  ADS  Google Scholar 

  9. J. Haase, C.P. Slichter, G.V.M. Williams, J. Phys. Condens. Matter 21, 455702 (2009). doi:10.1088/0953-8984/21/45/455702

    Article  ADS  Google Scholar 

  10. J. Haase, D. Rybicki, C.P. Slichter, M. Greven, G. Yu, Y. Li, X. Zhao, Phys. Rev. B 85, 104517 (2012). doi:10.1103/PhysRevB.85.104517

    Article  ADS  Google Scholar 

  11. T. Meissner, S.K. Goh, J. Haase, G.V.M. Williams, P.B. Littlewood, Phys. Rev. B 83, 220517 (2011). doi:10.1103/PhysRevB.83.220517

    Article  ADS  Google Scholar 

  12. D. Rybicki, J. Kohlrautz, J. Haase, M. Greven, X. Zhao, M.K. Chan, C.J. Dorow, M.J. Veit, Phys. Rev. B 92, 081115 (2015). doi:10.1103/PhysRevB.92.081115

    Article  ADS  Google Scholar 

  13. J. Haase, C.P. Slichter, R. Stern, C.T. Milling, D.G. Hinks, J. Supercond. Nov. Magn. 13, 723 (2000). doi:10.1023/A:1007853912812

    Article  ADS  Google Scholar 

  14. P.M. Singer, A.W. Hunt, T. Imai, Phys. Rev. Lett. 88, 047602 (2002). doi:10.1103/PhysRevLett.88.047602

    Article  ADS  Google Scholar 

  15. W. Chen, G. Khaliullin, O.P. Sushkov, Phys. Rev. B 83, 064514 (2011). doi:10.1103/PhysRevB.83.064514

    Article  ADS  Google Scholar 

  16. T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn, M.H. Julien, Nature 477, 191 (2011). doi:10.1038/nature10345

    Article  ADS  Google Scholar 

  17. T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, P.L. Kuhns, A.P. Reyes, R. Liang, W.N. Hardy, D.A. Bonn, M.H. Julien, Nat. Commun. 4, 2113 (2013). doi:10.1038/ncomms3113

    ADS  Google Scholar 

  18. T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. Hardy, R. Liang, D.A. Bonn, M.H. Julien, Nat. Commun. 6, 6438 (2015). doi:10.1038/ncomms7438

    Article  ADS  Google Scholar 

  19. S. Reichardt, M. Jurkutat, A. Erb, J. Haase, J. Supercond. Nov. Magn. 29, 3017 (2016). doi:10.1007/s10948-016-3827-1

    Article  Google Scholar 

  20. S. Reichardt, M. Jurkutat, A. Erb, J. Haase, To be Published

    Google Scholar 

  21. J. Haase, J. Supercond. 16, 473 (2003). doi:10.1023/A:1023882516857

    Article  ADS  Google Scholar 

  22. W. Heitler, E. Teller, Proc. R. Soc. A Math. Phys. Eng. Sci. 155, 629 (1936). doi:10.1098/rspa.1936.0124

    Article  ADS  Google Scholar 

  23. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957). doi:10.1103/PhysRev.106.162

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). doi:10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  Google Scholar 

  25. L.C. Hebel, C.P. Slichter, Phys. Rev. 113, 1504 (1959). doi:10.1103/PhysRev.113.1504

    Article  ADS  Google Scholar 

  26. Y. Masuda, A.G. Redfield, Phys. Rev. 125, 159 (1962). doi:10.1103/PhysRev.125.159

    Article  ADS  Google Scholar 

  27. K. Yosida, Phys. Rev. 110, 769 (1958). doi:10.1103/PhysRev.110.769

    Article  ADS  Google Scholar 

  28. J. Korringa, Physica 16, 601 (1950). doi:10.1016/0031-8914(50)90105-4

    Article  ADS  Google Scholar 

  29. S.E. Barrett, D.J. Durand, C.H. Pennington, C.P. Slichter, T.A. Friedmann, J.P. Rice, D.M. Ginsberg, Phys. Rev. B 41, 6283 (1990). doi:10.1103/PhysRevB.41.6283

    Article  ADS  Google Scholar 

  30. E. Helmut Brandt, Phys. C Supercond. 195, 1 (1992). doi:10.1016/0921-4534(92)90068-N

    Article  ADS  Google Scholar 

  31. N.J. Curro, C. Milling, J. Haase, C.P. Slichter, Phys. Rev. B 62, 3473 (2000). doi:10.1103/PhysRevB.62.3473

    Article  ADS  Google Scholar 

  32. M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, K.C. Ott, J.D. Thompson, Phys. Rev. Lett. 63, 1865 (1989). doi:10.1103/PhysRevLett.63.1865

    Article  ADS  Google Scholar 

  33. C.H. Pennington, D.J. Durand, C.P. Slichter, J.P. Rice, E.D. Bukowski, D.M. Ginsberg, Phys. Rev. B 39, 2902 (1989). doi:10.1103/PhysRevB.39.2902

    Article  ADS  Google Scholar 

  34. I. Mangelschots, M. Mali, J. Roos, D. Brinkmann, S. Rusiecki, J. Karpinski, E. Kaldis, Phys. C. Supercond 194, 277 (1992). doi:10.1016/S0921-4534(05)80005-X

    Article  ADS  Google Scholar 

  35. M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, J.L. Smith, R.B. Schwarz, Phys. Rev. B 39, 300 (1989). doi:10.1103/PhysRevB.39.300

    Article  ADS  Google Scholar 

  36. H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989). doi:10.1103/PhysRevLett.63.1700

    Article  ADS  Google Scholar 

  37. C.H. Pennington, D.J. Durand, C.P. Slichter, J.P. Rice, E.D. Bukowski, D.M. Ginsberg, Phys. Rev. B 39, 274 (1989). doi:10.1103/PhysRevB.39.274

    Article  ADS  Google Scholar 

  38. R.E. Walstedt, B.S. Shastry, S.W. Cheong, Phys. Rev. Lett. 72, 3610 (1994). doi:10.1103/PhysRevLett.72.3610

    Article  ADS  Google Scholar 

  39. K. Yoshimura, T. Imai, T. Shimizu, Y. Ueda, K. Kosuge, H. Yasuoka, J. Phys. Soc. Jpn. 58, 3057 (1989). doi:10.1143/JPSJ.58.3057

    Article  ADS  Google Scholar 

  40. S. Ohsugi, Y. Kitaoka, K. Ishida, G.Q. Zheng, K. Asayama, J. Phys. Soc. Jpn. 63, 700 (1994). doi:10.1143/JPSJ.63.700

    Article  ADS  Google Scholar 

  41. J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, M. Sato, Phys. Rev. B 46, 5561 (1992). doi:10.1103/PhysRevB.46.5561

    Article  ADS  Google Scholar 

  42. J. Haase, D.K. Morr, C.P. Slichter, Phys. Rev. B 59, 7191 (1999). doi:10.1103/PhysRevB.59.7191

    Article  ADS  Google Scholar 

  43. C.P. Slichter, in Handbook of High-Temperature Superconductivity, ed. by J.R. Schrieffer, J.S. Brooks (Springer, New York, 2007), pp. 215–256. doi:10.1007/978-0-387-68734-6_5

  44. R.E. Walstedt, The NMR Probe of High-T Materials, 1st edn. (Springer, Berlin, 2007). doi:10.1007/978-3-540-75565-4X

  45. G.Q. Zheng, T. Mito, Y. Kitaoka, K. Asayama, Y. Kodama, Phys. C Supercond. 243, 337 (1995). doi:10.1016/0921-4534(95)00029-1

    Article  ADS  Google Scholar 

  46. J. Haase, G.V.M. Williams, Private Communication (2000)

    Google Scholar 

  47. N.J. Curro, B.L. Young, J. Schmalian, D. Pines, Phys. Rev. B 70, 235117 (2004). doi:10.1103/PhysRevB.70.235117

    Article  ADS  Google Scholar 

  48. A.M. Mounce, S. Oh, J.A. Lee, W.P. Halperin, A.P. Reyes, P.L. Kuhns, M.K. Chan, C. Dorow, L. Ji, D. Xia, X. Zhao, M. Greven, Phys. Rev. Lett. 111, 187003 (2013). doi:10.1103/PhysRevLett.111.187003

    Article  ADS  Google Scholar 

  49. K. Schwarz, C. Ambrosch-Draxl, P. Blaha, Phys. Rev. B 42, 2051 (1990). doi:10.1103/PhysRevB.42.2051

    Article  ADS  Google Scholar 

  50. R.L. Martin, Phys. Rev. Lett. 75, 744 (1995). doi:10.1103/PhysRevLett.75.744

    Article  ADS  Google Scholar 

  51. S. Pliberšek, P.F. Meier, EPL 50, 789 (2000). doi:10.1209/epl/i2000-00550-y

    Article  ADS  Google Scholar 

  52. P.C. Hammel, B.W. Statt, R.L. Martin, F.C. Chou, D.C. Johnston, S.W. Cheong, Phys. Rev. B 57, R712 (1998). doi:10.1103/PhysRevB.57.R712

    Article  ADS  Google Scholar 

  53. Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, X.H. Yu, Phys. Rev. Lett. 62, 2317 (1989). doi:10.1103/PhysRevLett.62.2317

    Article  ADS  Google Scholar 

  54. T. Imai, C.P. Slichter, J.L. Cobb, J.T. Markert, J. Phys. Chem. Solids 56, 1921 (1995). doi:10.1016/0022-3697(95)00226-X

    Article  ADS  Google Scholar 

  55. M. Jurkutat, J. Haase, A. Erb, J. Supercond. Nov. Magn. 26, 2685 (2013). doi:10.1007/s10948-013-2160-1

    Article  Google Scholar 

  56. J.S. Schilling, in Handbook of High-Temperature Superconductivity, ed. by J.R. Schrieffer (Springer, New York, 2007). doi:10.1007/978-0-387-68734-6_11

  57. S. Reichardt, M. Jurkutat, J. Kohlrautz, A. Erb, J. Haase, To be Published (2016)

    Google Scholar 

  58. F. Arrouy, J.P. Locquet, E.J. Williams, E. Mächler, R. Berger, C. Gerber, C. Monroux, J.C. Grenier, A. Wattiaux, Phys. Rev. B 54, 7512 (1996). doi:10.1103/PhysRevB.54.7512

    Article  ADS  Google Scholar 

  59. I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, I. Sveklo, Phys. Rev. Lett. 89, 107001 (2002). doi:10.1103/PhysRevLett.89.107001

    Article  ADS  Google Scholar 

  60. Y.A. Kharkov, O.P. Sushkov, Sci. Rep. 6, 34551 (2016). doi:10.1038/srep34551

    Article  ADS  Google Scholar 

  61. D. Rybicki, J. Haase, M. Lux, M. Jurkutat, M. Greven, G. Yu, Y. Li, X. Zhao, arXiv:1208.4690v1 (2012)

    Google Scholar 

  62. J.A. Lee, Y. Xin, W.P. Halperin, A.P.P.L. Reyes, M.K. Chan, C. Dorow, L. Ji, D. Xia, X. Zhao, M. Greven, arXiv:1603.08839 (2016)

    Google Scholar 

  63. Y. Yoshinari, H. Yasuoka, Y. Ueda, K. Koga, K. Kosuge, J. Phys. Soc. Jpn. 59, 3698 (1990). doi: 10.1143/JPSJ.59.3698

  64. J.H. Ross, Z. Wang, C.P. Slichter, Phys. Rev. Lett. 56, 663 (1986). doi:10.1103/PhysRevLett.56.663

    Article  ADS  Google Scholar 

  65. A. Shengelaya, K.A. Müller, EPL 109, 27001 (2015). doi:10.1209/0295-5075/109/27001

    Article  ADS  Google Scholar 

  66. D. Rybicki, J. Haase, M. Greven, G. Yu, Y. Li, Y. Cho, X. Zhao, J. Supercond. Nov. Magn. 22, 179 (2009). doi:10.1007/s10948-008-0376-2

    Article  Google Scholar 

  67. G.V.M. Williams, R. Dupree, J.L. Tallon, Phys. Rev. B 60, 1360 (1999). doi:10.1103/PhysRevB.60.1360

    Article  ADS  Google Scholar 

  68. P.C. Hammel, A.P. Reyes, S.W. Cheong, Z. Fisk, J.E. Schirber, Phys. Rev. Lett. 71, 440 (1993). doi:10.1103/PhysRevLett.71.440

    Article  ADS  Google Scholar 

  69. J. Haase, R. Stern, D.G. Hinks, C.P. Slichter, in Stripes and Related Phenomena, ed. by A. Bianconi, N.L. Saini (Kluwer Academic/Plenum, New York, 2000), pp. 303–308. 10.1007/0-306-47100-0_36

  70. A.W. Hunt, P.P.M. Singer, A.F. Cederström, T. Imai, Phys. Rev. B 64, 134525 (2001). doi:10.1103/PhysRevB.64.134525

    Article  ADS  Google Scholar 

  71. G.V.M. Williams, J. Haase, Phys. Rev. B 75, 172506 (2007). doi:10.1103/PhysRevB.75.172506

    Article  ADS  Google Scholar 

  72. M.C. Chen, C.P. Slichter, Phys. Rev. B 27, 278 (1983). doi:10.1103/PhysRevB.27.278

    Article  ADS  Google Scholar 

  73. J. Haase, N.J. Curro, M. Jurkutat, Private Communication (2000–2015)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the University of Leipzig, the European Social Fund (ESF), and the Deutsche Forschungsgemeinschaft (DFG, project 23130964). We thank A. Bussmann-Holder for discussions and reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Haase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jurkutat, M., Kohlrautz, J., Reichardt, S., Erb, A., Williams, G.V.M., Haase, J. (2017). NMR of Cuprate Superconductors: Recent Developments. In: Bussmann-Holder, A., Keller, H., Bianconi, A. (eds) High-Tc Copper Oxide Superconductors and Related Novel Materials. Springer Series in Materials Science, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-319-52675-1_8

Download citation

Publish with us

Policies and ethics