Skip to main content

Intimacy Between Local Lattice and High Temperature Superconductivity: Perspective View on Undeniable Facts

  • Chapter
  • First Online:
High-Tc Copper Oxide Superconductors and Related Novel Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 255))

  • 932 Accesses

Abstract

Intimate relation between local lattice and high-temperature superconductivity is one of undeniable evidences for the lattice-driven mechanism of superconductivity that has been totally omitted in the previous discussions of possible pairing mechanism because researchers anticipated novel mechanism that does not seamlessly connected to conventional phonon-driven mechanism. We have found that local lattice shows unusual temperature-dependent deviation from equilibrium lattice that always maximizes at the onset superconducting critical temperature and quickly disappears right below. Taking an example of most popular doped cuprate La1.85Sr0.15Cu1−xO4 having a layered CuO2 plane, in-plane local distortion is shows a signature of polaron (bipolaron). The nature of dynamic lattice response in relation to the onset of superconductivity was probed by polarized x-ray absorption spectroscopy (XAS). Starting from La1.85Sr0.150.15Cu1−xO4, we studied pure and magnetic impurity-doped MxLa1.85Sr0.15Cu1−xO4 (M = Mn, Ni, Co, x < 0.05) single crystals and more recently Fe pnictides. The results confirmed that the distorted domains maximize at Td max ~ Tc onset, which is described by the disappearance of the in-plane Cu-O bond alternation upon the completion of phase coherence (onset of superconductivity). Together with the less significant anomalies in Fe pnictides reflecting superfluid density, the results suggest that the in-plane distortion with either Q2 or pseudo JT symmetry is a prerequisite for high temperature superconductivity in cuprates. This strongly suggests the electronic pairing mechanisms ignore the contribution of lattice and a proper treatment of lattice is a missing element that is actually deeply involved in the pairing mechanism. Here we describe our perspective view on the intimacy between local lattice and high-temperature superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1983)

    Article  ADS  Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  3. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  4. S. Kaiser, C.R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H.Y. Liu, M. Le Tacon, T. Lowe, D. Haug, B. Keimer, A. Cavalleri, Phys. Rev. B 89, 184516 (2014)

    Article  ADS  Google Scholar 

  5. C. Fang, H. Yao, W.-F. Tsai, J.P. Hu, S. Kievelson, Phys. Rev. B 77, 224509 (2008).

    Google Scholar 

  6. P.W. Anderson, The Theory of Superconductivity in the Cuprates (Princeton University Press, Princeton, M.A., 1997)

    Google Scholar 

  7. W. Malaeb, T. Yoshida, T. Kataoka, A. Fujimori, M. Kubota, K. Ono, H. Usui, K. Kuroki, R. Arita, H. Aoki, Y. Kamihara, M. Hirano, H. Hosono, J. Physical Soc. Japan 77, 093714 (2008)

    Article  ADS  Google Scholar 

  8. M. Hiraishi, R. Kadono, S. Takeshita, M. Miyazaki, A. Koda, H. Okabe, J. Akimitsu, J. Physical Soc. Japan 78, 023710 (2009)

    Article  ADS  Google Scholar 

  9. C.J. Zhang, H. Oyanagi, Z.H. Sun, Y. Kamihara, H. Hosono, Phys. Rev. B 78, 214513 (2008)

    Article  ADS  Google Scholar 

  10. C.J. Zhang, H. Oyanagi, Phys. Rev. B 79, 064521 (2009)

    Article  ADS  Google Scholar 

  11. H. Oyanagi, C.J. Zhang, J. Phys.: Conf. Ser. 428, 012042 (2013)

    Google Scholar 

  12. A.S. Alexandrov, J. Supercond. Nov. Magn. 22, 95 (2008)

    Article  Google Scholar 

  13. N. Mannela, W.L. Yang, K. Tanaka, X.J. Zhou, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hussain, Z.–.X. Shen, Phys. Rev. B 76, 233102 (2007)

    Article  ADS  Google Scholar 

  14. A. Lanzara et al., Nature 412, 510 (2001)

    Article  ADS  Google Scholar 

  15. A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, Phys. Rev. Lett. 76, 3412 (1996)

    Article  ADS  Google Scholar 

  16. N.L. Saini, A. Lanzara, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, A. Bianconi, Phys. Rev. B 55, 12759 (1997)

    Article  ADS  Google Scholar 

  17. J. Mustre de Leon, S.D. Conradson, I. Batistic, A.R. Bishop, Phys. Rev. Lett. 65, 1675 (1990)

    Article  ADS  Google Scholar 

  18. D. Mihailovic, Phys. Rev. Lett. 94, 207001-1 (2005)

    Article  ADS  Google Scholar 

  19. A. Bussmann-Holder, H. Keller, Eur. Phys. J. B. 44, 487 (2005)

    Article  ADS  Google Scholar 

  20. H. Koizumi, J. Physical Soc. Japan 77, 034712 (2008)

    Article  ADS  Google Scholar 

  21. H. Oyanagi, C. Fonne, D. Gutknecht, P. Dressler, R. Henck, M.–.O. Lampert, S. Ogawa, K. Kasai, Nucl. Inst. Methods A 513, 340 (2002)

    Article  ADS  Google Scholar 

  22. H. Oyanagi, A. Tsukada, M. Naito, N.L. Saini, Phys. Rev. B 75, 024511 (2007)

    Article  ADS  Google Scholar 

  23. A.A. Abrikosov, L.P. Gork’ov, Sov. Phys. -JETP 12, 1243 (1961)

    Google Scholar 

  24. H. Kamimura, H. Ushio, S. Matsuno, T. Hamada, Theory of Copper Oxide Superconductors (Springer, Berlin, 2005)

    Google Scholar 

  25. D. Mihailovic, V.V. Kabanov, K.A. Müller, Europhys. Lett. 57, 254 (2001)

    Article  ADS  Google Scholar 

  26. J.C. Phillips, Phys. Rev. B 75, 214503 (2007)

    Article  ADS  Google Scholar 

  27. G. Deutcher, P.G. de Gennes, C.R. Phys. 8, 937 (2007)

    Article  ADS  Google Scholar 

  28. K.H. Höck, H. Nickisch, H. Thomas, Helv. Phys. Acta. 56, 237 (1983)

    Google Scholar 

  29. A.M. Stoneham, L.W. Smith, J. Phys. Condens. Matter 3, 225 (1990)

    Article  ADS  Google Scholar 

  30. J.E. Hirsch, Phys. Rev. B 47, 5351 (1993)

    Article  ADS  Google Scholar 

  31. B. Kochelaev, A.M. Safina, A.S. Shengelaya, K.A. Müller, K. Conder, Mod. Phys. Lett. B 17, 415 (2003)

    Article  ADS  Google Scholar 

  32. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis, Science 315, 1380 (2007)

    Article  ADS  Google Scholar 

  33. D. Mihailovic, V.V. Kabanov, Phys. Rev. B 63, 054505 (2001)

    Article  ADS  Google Scholar 

  34. B.J. Kochelaev, J. Sichelschmidt, B. Elschner, W. Lemor, A. Loidl, Phys. Rev. Lett. 79, 4274 (1997)

    Article  ADS  Google Scholar 

  35. A.S. Alexandrov, V.V. Kabanov, N.F. Mott, Phys. Rev. Lett. 77, 4796 (1996)

    Article  ADS  Google Scholar 

  36. K.A. Müller, J. Phys. Condens. Matter 19, 251002 (2007)

    Article  ADS  Google Scholar 

  37. S. Onari, H. Kontani, Phys. Rec. Lett. 109, 137001 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Without the encouragement and inspiration to the author by K. Alex Müller, it would have been totally impossible to keep focusing on this work for over two decades. During this period, the author has engaged in experimental instrumentation including the development of a synchrotron beamline with an insertion device and a highly efficient x-ray detector. He expresses his greatest thanks to Changjing Zhang who contributed to the later collaborative studies, especially crystal growth and synchrotron experiments. The authors also would like to thank Annette Bussmann-Holder and Hugo Keller for encouragements and fruitful discussions which played as an engine of our work. In early days, the international collaboration between Italy and Japan has played an important role in kicking off the local lattice studies. The author expresses thanks to Antonio Bianconi who proposed a timely topic for a joint research based on the bilateral program. The author would like to express a special thanks to the Italian Embassy in Japan for the financial support. Finally the author expresses his thanks to a long term collaborator Naurang Saini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Oyanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oyanagi, H. (2017). Intimacy Between Local Lattice and High Temperature Superconductivity: Perspective View on Undeniable Facts. In: Bussmann-Holder, A., Keller, H., Bianconi, A. (eds) High-Tc Copper Oxide Superconductors and Related Novel Materials. Springer Series in Materials Science, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-319-52675-1_19

Download citation

Publish with us

Policies and ethics