Skip to main content

Isotope Effect on the Transition Temperature T c in Fe-Based Superconductors: The Current Status

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 255))

Abstract

The results of the Fe isotope effect (Fe–IE) on the transition temperature T c obtained up to date in various Fe-based high temperature superconductors are summarized and reanalyzed by following the approach developed in [R. Khasanov, M. Bendele, A. Bussmann-Holder, H. Keller, Phys. Rev. B 82, 212505 (2010)]. It is demonstrated that the very controversial results for Fe–IE on T c are caused by small structural changes occurring simultaneously with the Fe isotope exchange. The Fe–IE exponent on T c [α Fe  =  − (ΔT c /T c )/(ΔM/M), M is the isotope mass] needs to be decomposed into two components with the one related to the structural changes (\( {\alpha}_{Fe}^{str} \)) and the genuine (intrinsic one, \( {\alpha}_{Fe}^{int} \)). The validity of such decomposition is further confirmed by the fact that \( {\alpha}_{Fe}^{int} \) coincides with the Fe–IE exponent on the characteristic phonon frequencies \( {\alpha}_{Fe}^{\mathrm{ph}} \) as is reported in recent EXAFS and Raman experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Maxwell, Phys. Rev. 78, 477 (1950)

    Article  ADS  Google Scholar 

  2. C.A. Reynolds, B. Serin, W.H. Wright, L.B. Nesbitt, Phys. Rev. 78, 487 (1950)

    Article  ADS  Google Scholar 

  3. C.P. Poole, Handbook of Superconductitivy (Academic Press, Oval Road, London, 2000), pp. 24–28

    Google Scholar 

  4. W. Buckel, B. Strizker, Phys. Letters A 43, 403 (1973)

    Article  ADS  Google Scholar 

  5. J.E. Schriber, C.J.M. Northrup Jr., Phys. Rev. B 10, 3818 (1974)

    Article  ADS  Google Scholar 

  6. M. Yussouff, B.K. Rao, P. Jena, Solid State Commun. 94, 549 (1995)

    Article  ADS  Google Scholar 

  7. J.A. Schlueter, A.M. Kini, B.H. Ward, U. Geiser, H.H. Wang, J. Mohtasham, R.W. Winter, G.L. Gard, Physica C 351, 261 (2001)

    Article  ADS  Google Scholar 

  8. M.H. Whangbo, J.M. Willimas, A.J. Schultz, T.J. Emge, M.A. Beno, J. Am. Chem. Soc. 109, 90 (1997)

    Article  Google Scholar 

  9. A. Stucky, G. Scheerer, Z. Ren, D. Jaccard, J.-M. Poumirol, C. Barreteau, E. Giannini, D. van der Marel, Sci. Rep. 6, 37582 (2016)

    Google Scholar 

  10. B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987)

    Article  ADS  Google Scholar 

  11. J.P. Franck, J. Jung, M.A.-K. Mohamed, S. Gygax, G.I. Sproule, Phys. Rev. B 44, 5318 (1991)

    Article  ADS  Google Scholar 

  12. J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293

    Google Scholar 

  13. D. Zech, H. Keller, K. Conder, E. Kaldis, E. Liarokapis, N. Poulakis, K.A. Müller, Nature (London) 371, 681 (1994)

    Article  ADS  Google Scholar 

  14. G.-M. Zhao, H. Keller, K. Conder, J. Phys. Condens. Matter 13, R569 (2001)

    Article  ADS  Google Scholar 

  15. R. Khasanov, A. Shengelaya, K. Conder, E. Morenzoni, I.M. Savić, H. Keller, J. Phys. Condens. Matter 15, L17 (2003)

    Article  ADS  Google Scholar 

  16. R. Khasanov, A. Shengelaya, E. Morenzoni, M. Angst, K. Conder, I.M. Savić, D. Lampakis, E. Liarokapis, A. Tatsi, H. Keller, Phys. Rev. B 68, 220506(R) (2003b)

    Article  ADS  Google Scholar 

  17. R. Khasanov, A. Shengelaya, E. Morenzoni, K. Conder, I.M. Savić, H. Keller, J. Phys. Condens. Matter 16, S4439 (2004)

    Article  ADS  Google Scholar 

  18. R. Khasanov, D.G. Eshchenko, H. Luetkens, E. Morenzoni, T. Prokscha, A. Suter, N. Garifianov, M. Mali, J. Roos, K. Conder, H. Keller, Phys. Rev. Lett. 92, 057602 (2004)

    Article  ADS  Google Scholar 

  19. R. Khasanov, A. Shengelaya, K. Conder, E. Morenzoni, I.M. Savić, J. Karpinski, H. Keller, Phys. Rev. B 74, 064504 (2006)

    Article  ADS  Google Scholar 

  20. R. Khasanov, A. Shengelaya, D. Di Castro, D.G. Eshchenko, I.M. Savić, K. Conder, E. Pomjakushina, J. Karpinski, S. Kazakov, H. Keller, Phys. Rev. B 75, 060505(R) (2007)

    Article  ADS  Google Scholar 

  21. R. Khasanov, S. Strässle, K. Conder, E. Pomjakushina, A. Bussmann-Holder, H. Keller, Phys. Rev. B 77, 104530 (2008)

    Article  ADS  Google Scholar 

  22. J.L. Tallon, R.S. Islam, J. Storey, G.V.M. Williams, J.R. Cooper, Phys. Rev. Lett. 94, 237002 (2005)

    Article  ADS  Google Scholar 

  23. X.-J. Chen, B. Liang, C. Ulrich, C.-T. Lin, V.V. Struzhkin, Z. Wu, R.J. Hemley, H.-k. Mao, H.-Q. Lin, Phys. Rev. B 76, 140502 (2007)

    Article  ADS  Google Scholar 

  24. R. Khasanov, A. Shengelaya, D. Di Castro, E. Morenzoni, A. Maisuradze, I.M. Savić, K. Conder, E. Pomjakushina, A. Bussmann-Holder, H. Keller, Phys. Rev. Lett. 101, 077001 (2008)

    Article  ADS  Google Scholar 

  25. R.H. Liu, T. Wu, G. Wu, H. Chen, X.F. Wang, Y.L. Xie, J.J. Yin, Y.J. Yan, Q.J. Li, B.C. Shi, W.S. Chu, Z.Y. Wu, X.H. Chen, Nature 459, 64 (2009)

    Article  ADS  Google Scholar 

  26. P.M. Shirage, K. Kihou, K. Miyazawa, C.-H. Lee, H. Kito, H. Eisaki, T. Yanagisawa, Y. Tanaka, A. Iyo, Phys. Rev. Lett 103, 257003 (2009)

    Article  ADS  Google Scholar 

  27. P.M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida, Y. Tanaka, H. Eisaki, A. Iyo, Phys. Rev. Lett. 105, 037004 (2010)

    Article  ADS  Google Scholar 

  28. R. Khasanov, M. Bendele, K. Conder, H. Keller, E. Pomjakushina, V. Pomjakushin, New J. Phys. 12, 073024 (2010)

    Article  ADS  Google Scholar 

  29. Y. Tsuge, A. Iyo, Y. Tanaka, H. Eisaki, T. Nishio, Physics Procedia 36, 731 (2012)

    Article  ADS  Google Scholar 

  30. Y. Tsuge, T. Nishio, A. Iyo, Y. Tanaka, H. Eisaki, J. Phys.: Conf. Ser. 507, 012037 (2014)

    Google Scholar 

  31. W. Chu, J. Cheng, S. Chu, T. Hu, A. Marcelli, X. Chen, Z. Wu, Sci. Rep. 3, 1750 (2013)

    Article  ADS  Google Scholar 

  32. B. Singh, P.M. Shirage, A. Iyo, P. Kumar, AIP Adv. 6, 105310 (2016)

    Article  ADS  Google Scholar 

  33. A. Bussmann-Holder, A. Simon, H. Keller, A.R. Bishop, J. Supercond. Nov. Magn. 24, 1099 (2011)

    Article  Google Scholar 

  34. R. Khasanov, M. Bendele, A. Bussmann-Holder, H. Keller, Phys. Rev. B 82, 212505 (2010)

    Article  ADS  Google Scholar 

  35. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov, Phys. Rev. B 80, 024517 (2009)

    Article  ADS  Google Scholar 

  36. K. Horigane, H. Hiraka, K. Ohoyama, J. Phys. Soc. Jpn. 78, 074718 (2009)

    Article  ADS  Google Scholar 

  37. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, J. Phys. Soc. Jpn. 78, 074712 (2009)

    Article  ADS  Google Scholar 

  38. Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou, Y. Takano, Supercond. Sci. Technol. 23, 054013 (2010)

    Article  ADS  Google Scholar 

  39. S. Margadonna, Y. Takabayashi, M.T. McDonald, M. Brunelli, G. Wu, R.H. Liu, X.H. Chen, K. Prassides, Phys. Rev. B 79, 014503 (2009)

    Article  ADS  Google Scholar 

  40. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, P. Dai, Nat. Mater. 7, 953 (2008)

    Article  ADS  Google Scholar 

  41. M. Rotter, M. Pangerl, M. Tegel, D. Johrendt, Angew. Chem. Int. Ed. 47, 7949 (2008)

    Article  Google Scholar 

  42. T.M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H.W. Zandbergen, Y.S. Hor, J. Allred, A.J. Williams, D. Qu, J. Checkelsky, N.P. Ong, R.J. Cava, Phys. Rev. B 79, 014522 (2009)

    Article  ADS  Google Scholar 

  43. M. Tinkham, Introduction to Superconductivity (Krieger Publishing Company, Malabar, Florida, 1975)

    Google Scholar 

  44. A.S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling (Institute of Physics Publishing, Bristol, 2003)

    Book  Google Scholar 

Download references

Acknowledgments

The author acknowledges the broad and successful collaboration with people without whom this work could not be performed: Markus Bendele, Hugo Keller, Annette Bussmann-Holder, Kazimierz Conder, Ekaterina Pomjakushina, and Volodya Pomjakushin. The special thank goes to Karl Alex Müller and Hugo Keller who were initiated my interest to the isotope effect studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem Khasanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khasanov, R. (2017). Isotope Effect on the Transition Temperature T c in Fe-Based Superconductors: The Current Status. In: Bussmann-Holder, A., Keller, H., Bianconi, A. (eds) High-Tc Copper Oxide Superconductors and Related Novel Materials. Springer Series in Materials Science, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-319-52675-1_12

Download citation

Publish with us

Policies and ethics