Skip to main content

Antimycobacterial Agents: To Target or Not to Target

  • Chapter
  • First Online:

Abstract

Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium ulcerans are the three most common pathogens of mycobacterium genus. M. tuberculosis, the causative agent of tuberculosis in humans, is the most dangerous bacterial pathogen. In fact as per latest WHO report, M. tuberculosis killed more people than HIV in the last few years and is now the leading cause of death. The worst affected from global TB epidemic are nine high-burden countries which includes China and India. The 23% of total TB cases are reported from India, indicating that more serious efforts are needed to tackle the TB incidence, prevalence, and mortality. Another concern is rise of multiple drug-resistant M. tuberculosis strains and all current antimycobacterial agents will no longer be effective in the future. Research in TB drug discovery remains abysmal and there is shortfall of USD 1.6 billion to treat the most neglected disease. TB does not attract major funding from developed countries which prioritize cancer, HIV, and malaria. As drug discovery is getting costlier, most of the major pharmaceutical companies do not find TB research financially viable. This has resulted in major gap between drug discovery pipeline and need for new drugs. The challenge is to stop global TB epidemic by finding new antimycobacterial agents that effectively treat MDR-TB and XDR-TB in few months and not years. This chapter will describe current antimycobacterial agents, their mechanisms, and new candidate molecules in clinical trials. The goal is to understand how the old drugs worked and how we can design new strategies to develop new antimycobacterial agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akbergenov R, Shcherbakov D, Matt T, Duscha S, Meyer M, Wilson DN, Bottger EC (2011) Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob Agents Chemother 55:4712–4717. doi:10.1128/AAC.00628-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alangaden GJ, Kreiswirth BN, Aouad A, Khetarpal M, Igno FR, Moghazeh SL, Manavathu EK, Lerner SA (1998) Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:1295–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora G, Sajid A, Arulanandh MD, Singhal A, Mattoo AR, Pomerantsev AP, Leppla SH, Maiti S, Singh Y (2012) Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. J Biol Chem 287:26749–26763. doi:10.1074/jbc.M112.351304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora G, Sajid A, Arulanandh MD, Misra R, Singhal A, Kumar S, Singh LK, Mattoo AR, Raj R, Maiti S, Basu-Modak S, Singh Y (2013) Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/BasPrpC) in Bacillus anthracis. Biometals 26:715–730. doi:10.1007/s10534-013-9646-y

    Article  CAS  PubMed  Google Scholar 

  • Arora G, Sajid A, Singhal A, Joshi J, Virmani R, Gupta M, Verma N, Maji A, Misra R, Baronian G, Pandey AK, Molle V, Singh Y (2014) Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLoS Negl Trop Dis 8:e3315. doi:10.1371/journal.pntd.0003315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aziz MA, Wright A (2005) The World Health Organization/International Union Against Tuberculosis and Lung Disease Global Project on Surveillance for Anti-Tuberculosis Drug Resistance: a model for other infectious diseases. Clin Infect Dis 41(Suppl 4):S258–S262. doi:10.1086/430786

    Article  PubMed  Google Scholar 

  • Balasubramanian V, Solapure S, Iyer H, Ghosh A, Sharma S, Kaur P, Deepthi R, Subbulakshmi V, Ramya V, Ramachandran V, Balganesh M, Wright L, Melnick D, Butler SL, Sambandamurthy VK (2014a) Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob Agents Chemother 58:495–502. doi:10.1128/AAC.01903-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian V, Solapure S, Shandil R, Gaonkar S, Mahesh KN, Reddy J, Deshpande A, Bharath S, Kumar N, Wright L, Melnick D, Butler SL (2014b) Pharmacokinetic and pharmacodynamic evaluation of AZD5847 in a mouse model of tuberculosis. Antimicrob Agents Chemother 58:4185–4190. doi:10.1128/AAC.00137-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balemans W, Vranckx L, Lounis N, Pop O, Guillemont J, Vergauwen K, Mol S, Gilissen R, Motte M, Lancois D, De BM, Bonroy K, Lill H, Andries K, Bald D, Koul A (2012) Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria. Antimicrob Agents Chemother 56:4131–4139. doi:10.1128/AAC.00273-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de LG, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230. doi:10.1126/science.8284673

    Article  CAS  PubMed  Google Scholar 

  • Barry CE III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855. doi:10.1038/nrmicro2236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman C (2015) Tugela Ferry’s extensively drug-resistant tuberculosis--10 years on. S Afr Med J 105:517–520. doi:10.7196/SAMJNEW.7838

    Article  PubMed  Google Scholar 

  • Behera D (2012) Totally drug resistant tuberculosis--a fact or myth? Indian J Tuberc 59:190–193

    CAS  PubMed  Google Scholar 

  • Bemer-Melchior P, Bryskier A, Drugeon HB (2000) Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother 46:571–576. doi:10.1093/jac/46.4.571

    Article  CAS  PubMed  Google Scholar 

  • Bernardes-Genisson V, Deraeve C, Chollet A, Bernadou J, Pratviel G (2013) Isoniazid: an update on the multiple mechanisms for a singular action. Curr Med Chem 20:4370–4385. doi:10.2174/15672050113109990203

    Article  CAS  PubMed  Google Scholar 

  • Biswas DK, Gorini L (1972) The attachment site of streptomycin to the 30S ribosomal subunit. Proc Natl Acad Sci USA 69:2141–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard JS (1996) Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem 65:215–239. doi:10.1146/annurev.bi.65.070196.001243

    Article  CAS  PubMed  Google Scholar 

  • Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, Wang C, Tailleux L, Tilleul S, Charriere GM, Waddell SJ, Foti M, Lugo-Villarino G, Gao Q, Maridonneau-Parini I, Butcher PD, Castagnoli PR, Gicquel B, de CC, Neyrolles O (2011) Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–259. doi:10.1016/j.chom.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozdogan B, Appelbaum PC (2004) Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents 23:113–119. doi:10.1016/j.ijantimicag.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  • Bridge J, Hunter BM, Albers E, Cook C, Guarinieri M, Lazarus JV, MacAllister J, McLean S, Wolfe D (2015) The Global Fund to Fight AIDS, Tuberculosis and Malaria’s investments in harm reduction through the rounds-based funding model (2002-2014). Int J Drug Policy. doi:10.1016/j.drugpo.2015.08.001

    PubMed  Google Scholar 

  • Calvori C, Frontali L, Leoni L, Tecce G (1965) Effect of rifamycin on protein synthesis. Nature 207:417–418. doi:10.1038/207417a0

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, De C, Bhattacharyya S, Mukherjee A, Santra S, Banerjee D, Sarkar RN, Guha SK (2010) Drug susceptibility profile of Mycobacterium tuberculosis isolated from HIV infected and uninfected pulmonary tuberculosis patients in eastern India. Trans R Soc Trop Med Hyg 104:195–201. doi:10.1016/j.trstmh.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  • Chawla Y, Upadhyay S, Khan S, Nagarajan SN, Forti F, Nandicoori VK (2014) Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J Biol Chem 289:13858–13875. doi:10.1074/jbc.M114.563536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS (2003) Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem 278:21972–21979. doi:10.1074/jbc.M302109200

    Article  CAS  PubMed  Google Scholar 

  • Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE, Maiello P, Via LE, Kim Y, Marriner G, Dartois V, Scanga C, Janssen C, Wang J, Klein E, Cho SN, Barry CE III, Flynn JL (2014) PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med 6:265ra167. doi:10.1126/scitranslmed.3009500

    Article  PubMed  CAS  Google Scholar 

  • Dalton T, Cegielski P, Akksilp S, Asencios L, Campos CJ, Cho SN, Erokhin VV, Ershova J, Gler MT, Kazennyy BY, Kim HJ, Kliiman K, Kurbatova E, Kvasnovsky C, Leimane V, van der WM, Via LE, Volchenkov GV, Yagui MA, Kang H, Akksilp R, Sitti W, Wattanaamornkiet W, Andreevskaya SN, Chernousova LN, Demikhova OV, Larionova EE, Smirnova TG, Vasilieva IA, Vorobyeva AV, Barry CE III, Cai Y, Shamputa IC, Bayona J, Contreras C, Bonilla C, Jave O, Brand J, Lancaster J, Odendaal R, Chen MP, Diem L, Metchock B, Tan K, Taylor A, Wolfgang M, Cho E, Eum SY, Kwak HK, Lee J, Lee J, Min S, Degtyareva I, Nemtsova ES, Khorosheva T, Kyryanova EV, Egos G, Perez MT, Tupasi T, Hwang SH, Kim CK, Kim SY, Lee HJ, Kuksa L, Norvaisha I, Skenders G, Sture I, Kummik T, Kuznetsova T, Somova T, Levina K, Pariona G, Yale G, Suarez C, Valencia E, Viiklepp P (2012) Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet 380:1406–1417. doi:10.1016/S0140-6736(12)60734-X

    Article  CAS  PubMed  Google Scholar 

  • Das KM, Eastwood MA, McManus JP, Sircus W (1973) Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N Engl J Med 289:491–495. doi:10.1056/NEJM197309062891001

    Article  CAS  PubMed  Google Scholar 

  • Davies FL, Giske CG, Bruchfeld J, Schon T, Jureen P, Angeby K (2015) Meropenem-clavulanic acid has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:3630–3632. doi:10.1128/AAC.00171-15

    Article  CAS  Google Scholar 

  • De SA, De SG (2001) Adverse reactions to fluoroquinolones. An overview on mechanistic aspects. Curr Med Chem 8:371–384. doi:10.2174/0929867013373435

    Article  Google Scholar 

  • Demirci H, Murphy FV, Murphy EL, Connetti JL, Dahlberg AE, Jogl G, Gregory ST (2014) Structural analysis of base substitutions in Thermus thermophilus 16S rRNA conferring streptomycin resistance. Antimicrob Agents Chemother 58:4308–4317. doi:10.1128/AAC.02857-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dheda K, Barry CE III, Maartens G (2015) Tuberculosis. Lancet. doi:10.1016/S0140-6736(15)00151-8

    Google Scholar 

  • Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De MT, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de BK, Andries K, Mc Neeley DF (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405. doi:10.1056/NEJMoa0808427

    Article  CAS  PubMed  Google Scholar 

  • Donald PR, Diacon AH (2015) Para-aminosalicylic acid: the return of an old friend. Lancet Infect Dis 15:1091–1099. doi:10.1016/S1473-3099(15)00263-7

    Article  CAS  PubMed  Google Scholar 

  • Du Q, Dai G, Long Q, Yu X, Dong L, Huang H, Xie J (2013) Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China. Diagn Microbiol Infect Dis 77:138–142. doi:10.1016/j.diagmicrobio.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  • Esposito S, Bianchini S, Blasi F (2015) Bedaquiline and delamanid in tuberculosis. Expert Opin Pharmacother 16:2319–2330. doi:10.1517/14656566.2015.1080240

    Article  PubMed  CAS  Google Scholar 

  • Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6:170–184. doi:10.1177/2040622315582325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel N (2015) Tuberculosis: a disease without boundaries. Tuberculosis (Edinb) 95:527–531. doi:10.1016/j.tube.2015.05.017

    Article  Google Scholar 

  • French G (2003) Safety and tolerability of linezolid. J Antimicrob Chemother 51(Suppl 2):ii45–ii53. doi:10.1093/jac/dkg253

    CAS  PubMed  Google Scholar 

  • Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC (2012) Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7:e33275. doi:10.1371/journal.pone.0033275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getahun H, Matteelli A, Chaisson RE, Raviglione M (2015) Latent Mycobacterium tuberculosis infection. N Engl J Med 372:2127–2135. doi:10.1056/NEJMra1405427

    Article  CAS  PubMed  Google Scholar 

  • Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D (2011) Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One 6:e23575. doi:10.1371/journal.pone.0023575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harries AD, Dye C (2006) Tuberculosis. Ann Trop Med Parasitol 100:415–431

    CAS  PubMed  Google Scholar 

  • Heifets L, Lindholm-Levy P (1989) Comparison of bactericidal activities of streptomycin, amikacin, kanamycin, and capreomycin against Mycobacterium avium and M. tuberculosis. Antimicrob Agents Chemother 33:1298–1301. doi:10.1128/AAC.33.8.1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper DC (2000) Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31(Suppl 2):S24–S28. doi:10.1086/314056

    Article  CAS  PubMed  Google Scholar 

  • Jadaun GP, Agarwal C, Sharma H, Ahmed Z, Upadhyay P, Faujdar J, Gupta AK, Das R, Gupta P, Chauhan DS, Sharma VD, Katoch VM (2007) Determination of ethambutol MICs for Mycobacterium tuberculosis and Mycobacterium avium isolates by resazurin microtitre assay. J Antimicrob Chemother 60:152–155. doi:10.1093/jac/dkm117

    Article  CAS  PubMed  Google Scholar 

  • Jankute M, Grover S, Rana AK, Besra GS (2012) Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiol 7:129–147. doi:10.2217/fmb.11.123

    Article  CAS  PubMed  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182. doi:10.1016/j.molcel.2006.05.044

    Article  CAS  PubMed  Google Scholar 

  • Jugheli L, Bzekalava N, De RP, Fissette K, Portaels F, Rigouts L (2009) High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob Agents Chemother 53:5064–5068. doi:10.1128/AAC.00851-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  • Kamboj M, Sepkowitz KA (2006) The risk of tuberculosis in patients with cancer. Clin Infect Dis 42:1592–1595. doi:10.1086/503917

    Article  PubMed  Google Scholar 

  • Karumbi J, Garner P (2015) Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev 5:CD003343. doi:10.1002/14651858

    Google Scholar 

  • Katsuno K, Burrows JN, Duncan K, Hooft van HR, Kaneko T, Kita K, Mowbray CE, Schmatz D, Warner P, Slingsby BT (2015) Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov 14:751–758. doi:10.1038/nrd4683

    Article  CAS  PubMed  Google Scholar 

  • Keller PM, Homke R, Ritter C, Valsesia G, Bloemberg GV, Bottger EC (2015) Determination of MIC distribution and epidemiological cutoff values for bedaquiline and delamanid in Mycobacterium tuberculosis using the MGIT 960 system equipped with TB eXiST. Antimicrob Agents Chemother 59:4352–4355. doi:10.1128/AAC.00614-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khardori N, Nguyen H, Rosenbaum B, Rolston K, Bodey GP (1994) In vitro susceptibilities of rapidly growing mycobacteria to newer antimicrobial agents. Antimicrob Agents Chemother 38:134–137. doi:10.1128/AAC.38.1.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopper M, Warren RM, Hayes C, Gey van Pittius NC, Streicher EM, Muller B, Sirgel FA, Chabula-Nxiweni M, Hoosain E, Coetzee G, vid van HP, Victor TC, Trollip AP (2013) Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 19:449–455. doi:10.3201/EID1903.120246

    Article  PubMed  PubMed Central  Google Scholar 

  • Koul A, Herget T, Klebl B, Ullrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2:189–202. doi:10.1038/nrmicro840

    Article  CAS  PubMed  Google Scholar 

  • Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490. doi:10.1038/nature09657

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HI, Barry CE III (2012) Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86:367–381. doi:10.1111/j.1365-2958.2012.08199.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Negi B, Rawat DS (2015) The anti-tuberculosis agents under development and the challenges ahead. Future Med Chem. doi:10.4155/fmc.15.128

    Google Scholar 

  • Kwon YS, Jeong BH, Koh WJ (2014) Tuberculosis: clinical trials and new drug regimens. Curr Opin Pulm Med 20:280–286. doi:10.1097/MCP.0000000000000045

    Article  CAS  PubMed  Google Scholar 

  • Lambert MP, Neuhaus FC (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli. World J Bacteriol 110:978–987

    CAS  Google Scholar 

  • Lee RE, Brennan PJ, Besra GS (1997) Mycobacterial arabinan biosynthesis: the use of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay. Glycobiology 7:1121–1128. doi:10.1093/glycob/7.8.1121

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, Via LE, Goldfeder LC, Kang E, Jin B, Park H, Kwak H, Kim H, Jeon HS, Jeong I, Joh JS, Chen RY, Olivier KN, Shaw PA, Follmann D, Song SD, Lee JK, Lee D, Kim CT, Dartois V, Park SK, Cho SN, Barry CE III (2012) Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367:1508–1518. doi:10.1056/NEJMoa1201964

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Cho SN, Barry CE III, Song T, Kim Y, Jeong I (2015) Linezolid for XDR-TB--final study outcomes. N Engl J Med 373:290–291. doi:10.1056/NEJMc1500286

    Article  CAS  PubMed  Google Scholar 

  • Lei B, Wei CJ, Tu SC (2000) Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inha inhibitor. J Biol Chem 275:2520–2526. doi:10.1074/jbc.275.4.2520

    Article  CAS  PubMed  Google Scholar 

  • Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, Tompkins NM, Rose JD, Reynolds RC, Orme IM (2005) Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49:2294–2301. doi:10.1128/AAC.49.6.2294-2301.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JM, Sloan DJ (2015) The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 11:779–791. doi:10.2147/TCRM.S71076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Kayani M, Gu Y, Wang X, Zhu T, Duan H, Ma Y, Huang H, Javid B (2015) Transmitted extended-spectrum extensively drug-resistant tuberculosis in Beijing, China, with discordant whole-genome sequencing analysis results. J Clin Microbiol 53:2781–2784. doi:10.1128/JCM.00891-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macgregor AG, Somner AR (1954) The anti-thyroid action of para-aminosalicylic acid. Lancet 267:931–936. doi:10.1016/S0140-6736(54)92552-0

    Article  CAS  PubMed  Google Scholar 

  • Martinez N, Kornfeld H (2014) Diabetes and immunity to tuberculosis. Eur J Immunol 44:617–626. doi:10.1002/eji.201344301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, Cambau E, Aubry A (2012) A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67:819–831. doi:10.1093/jac/dkr566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrat S, Cambau E, Jarlier V, Aubry A (2008) Are all the DNA gyrase mutations found in Mycobacterium leprae clinical strains involved in resistance to fluoroquinolones? Antimicrob Agents Chemother 52:745–747. doi:10.1128/AAC.01095-07

    Article  CAS  PubMed  Google Scholar 

  • Matteelli A, Carvalho AC, Dooley KE, Kritski A (2010) TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 5:849–858. doi:10.2217/fmb.10.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mdluli K, Kaneko T, Upton A (2015) The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5. doi:10.1101/cshperspect.a021154

  • Miotto P, Cirillo DM, Migliori GB (2015) Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 147:1135–1143. doi:10.1378/chest.14-1286

    Article  PubMed  Google Scholar 

  • Mitchison DA (1998) How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 2:10–15

    CAS  PubMed  Google Scholar 

  • Mitchison D, Davies G (2012) The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16:724–732. doi:10.5588/ijtld.12.0083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwandumba HC, Russell DG, Nyirenda MH, Anderson J, White SA, Molyneux ME, Squire SB (2004) Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection. J Immunol 172:4592–4598. doi:10.4049/jimmunol.172.7.4592

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan SN, Upadhyay S, Chawla Y, Khan S, Naz S, Subramanian J, Gandotra S, Nandicoori VK (2015) Protein kinase A (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J Biol Chem 290:9626–9645. doi:10.1074/jbc.M114.611822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogden J, Rangan S, Uplekar M, Porter J, Brugha R, Zwi A, Nyheim D (1999) Shifting the paradigm in tuberculosis control: illustrations from India. Int J Tuberc Lung Dis 3:855–861

    CAS  PubMed  Google Scholar 

  • Owens RC Jr, Ambrose PG (2005) Antimicrobial safety: focus on fluoroquinolones. Clin Infect Dis 41(Suppl 2):S144–S157. doi:10.1086/428055

    Article  CAS  PubMed  Google Scholar 

  • Paige C, Bishai WR (2010) Penitentiary or penthouse condo: the tuberculous granuloma from the microbe’s point of view. Cell Microbiol 12:301–309. doi:10.1111/j.1462-5822.2009.01424.x

    Article  CAS  PubMed  Google Scholar 

  • Pantel A, Petrella S, Matrat S, Brossier F, Bastian S, Reitter D, Jarlier V, Mayer C, Aubry A (2011) DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:4524–4529. doi:10.1128/AAC.00707-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RV, Riyaz SD, Park SW (2014) Bedaquiline: a new hope to treat multi-drug resistant tuberculosis. Curr Top Med Chem 14:1866–1874. doi:10.2174/1568026614666140929114822

    Article  CAS  PubMed  Google Scholar 

  • Patel RV, Keum YS, Park SW (2015) Nitroimidazoles, quinolones and oxazolidinones as fluorine bearing antitubercular clinical candidates. Mini Rev Med Chem 15:1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Pereira SF, Goss L, Dworkin J (2011) Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75:192–212. doi:10.1128/MMBR.00042-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser GA, de Carvalho LP (2013) Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine. FEBS J 280:1150–1166. doi:10.1111/febs.12108

    Article  CAS  PubMed  Google Scholar 

  • Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, Einck L, Nacy CA (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974. doi:10.1093/jac/dki319

    Article  CAS  PubMed  Google Scholar 

  • Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2015) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother. doi:10.1093/jac/dkv316

    PubMed  Google Scholar 

  • Purohit HJ, Cheema S, Lal S, Raut CP, Kalia VC (2007) In search of drug targets for Mycobacterium tuberculosis. Infect Disord Drug Targets 7:245–250. doi:10.2174/187152607782110068

    Article  CAS  PubMed  Google Scholar 

  • Rastogi N, David HL (1993) Mode of action of antituberculous drugs and mechanisms of drug resistance in Mycobacterium tuberculosis. Res Microbiol 144:133–143. doi:10.1016/0923-2508(93)90028-Z

    Article  CAS  PubMed  Google Scholar 

  • Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282. doi:10.1111/j.1365-2958.2004.04120.x

    Article  CAS  PubMed  Google Scholar 

  • Ristuccia AM, Cunha BA (1985) An overview of amikacin. Ther Drug Monit 7:12–25

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JC, Ruiz M, Climent A, Royo G (2001) In vitro activity of four fluoroquinolones against Mycobacterium tuberculosis. Int J Antimicrob Agents 17:229–231. doi:10.1016/S0924-8579(00)00337-X

    Article  CAS  PubMed  Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577. doi:10.1038/35085034

    Article  CAS  PubMed  Google Scholar 

  • Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, Hussein MZ (2014) Development of a highly biocompatible antituberculosis nanodelivery formulation based on para-aminosalicylic acid-zinc layered hydroxide nanocomposites. Sci World J 2014:401–460. doi:10.1155/2014/401460

    Article  CAS  Google Scholar 

  • Sajid A, Arora G, Gupta M, Singhal A, Chakraborty K, Nandicoori VK, Singh Y (2011a) Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J Bacteriol 193:5347–5358. doi:10.1128/JB.05469-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajid A, Arora G, Gupta M, Upadhyay S, Nandicoori VK, Singh Y (2011b) Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One 6:e17871. doi:10.1371/journal.pone.0017871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajid A, Arora G, Singhal A, Kalia VC, Singh Y (2015) Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol 69:527–547. doi:10.1146/annurev-micro-020415-111342

    Article  CAS  PubMed  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84. doi:10.1046/j.1365-2958.2003.03425.x

    Article  CAS  PubMed  Google Scholar 

  • Schito M, Maeurer M, Kim P, Hanna D, Zumla A (2015a) Translating the tuberculosis research agenda: much accomplished, but much more to be done. Clin Infect Dis 61(Suppl 3):S95–S101. doi:10.1093/cid/civ608

    Article  PubMed Central  Google Scholar 

  • Schito M, Migliori GB, Fletcher HA, McNerney R, Centis R, D’ambrosio L, Bates M, Kibiki G, Kapata N, Corrah T, Bomanji J, Vilaplana C, Johnson D, Mwaba P, Maeurer M, Zumla A (2015b) Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin Infect Dis 61(Suppl 3):S102–S118. doi:10.1093/cid/civ609

    Article  CAS  PubMed Central  Google Scholar 

  • Schweinle JE (1990) Evolving concepts of the epidemiology, diagnosis, and therapy of Mycobacterium tuberculosis infection. Yale J Biol Med 63:565–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Mohan A (2006) Multidrug-resistant tuberculosis: a menace that threatens to destabilize tuberculosis control. Chest 130:261–272. doi:10.1378/chest.130.1.261

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R (2007) Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J Mol Biol 374:1065–1076. doi:10.1016/j.jmb.2007.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Sharma A, Kadhiravan T, Tharyan P (2013) Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev 7:CD007545. doi:10.1002/14651858

    Google Scholar 

  • Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, Katoch VM (2006) The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J Commun Dis 38:288–298

    PubMed  Google Scholar 

  • Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE III (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395. doi:10.1126/science.1164571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal A, Arora G, Sajid A, Maji A, Bhat A, Virmani R, Upadhyay S, Nandicoori VK, Sengupta S, Singh Y (2013) Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci Rep 3:2264. doi:10.1038/srep02264

    Article  PubMed  PubMed Central  Google Scholar 

  • Singhal A, Arora G, Virmani R, Kundu P, Khanna T, Sajid A, Misra R, Joshi J, Yadav V, Samanta S, Saini N, Pandey AK, Visweswariah SS, Hentschker C, Becher D, Gerth U, Singh Y (2015) Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. J Biol Chem 290:26218–26234. doi:10.1074/jbc.M115.687269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirgel FA, Tait M, Warren RM, Streicher EM, Bottger EC, van Helden PD, Gey van Pittius NC, Coetzee G, Hoosain EY, Chabula-Nxiweni M, Hayes C, Victor TC, Trollip A (2012) Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist 18:193–197. doi:10.1089/mdr.2011.0063

    Article  CAS  PubMed  Google Scholar 

  • Slayden RA, Barry CE III (2000) The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect 2:659–669. doi:10.1016/S1286-4579(00)00359-2

    Article  CAS  PubMed  Google Scholar 

  • Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2:164–168. doi:10.1186/rr54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni V, Upadhayay S, Suryadevara P, Samla G, Singh A, Yogeeswari P, Sriram D, Nandicoori VK (2015) Depletion of M. tuberculosis GlmU from infected murine lungs effects the clearance of the pathogen. PLoS Pathog 11:e1005235. doi:10.1371/journal.ppat.1005235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotgiu G, Centis R, D’ambrosio L, Migliori GB (2015) Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 5:a017822. doi:10.1101/cshperspect.a017822

    Article  PubMed  Google Scholar 

  • Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 17:289–293. doi:10.1038/nsmb.1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead WW, Dutt AK (1989) Tuberculosis in the elderly. Semin Respir Infect 4:189–197

    CAS  PubMed  Google Scholar 

  • Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, Hackman J, Hamilton CD, Menzies D, Kerrigan A, Weis SE, Weiner M, Wing D, Conde MB, Bozeman L, Horsburgh CR Jr, Chaisson RE (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365:2155–2166. doi:10.1056/NEJMoa1104875

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966. doi:10.1038/35016103

    Article  CAS  PubMed  Google Scholar 

  • Sullivan T, Ben AY (2013) What’s in a name? The future of drug-resistant tuberculosis classification. Lancet Infect Dis 13:373–376. doi:10.1016/S1473-3099(12)70318-3

    Article  PubMed  Google Scholar 

  • Sullivan ZA, Wong EB, Ndung’u T, Kasprowicz VO, Bishai WR (2015) Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine 2:334–340. doi:10.1016/j.ebiom.2015.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE III, Boshoff HI (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809. doi:10.1128/AAC.05708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, David HL, Wang L, Goldman DS (1970) Isolation and characterization of uridine diphosphate-N-glycolylmuramyl-L-alanyl-gamma-D-glutamyl-meso-alpha,alpha′-diamino pimelic acid from Mycobacterium tuberculosis. Biochem Biophys Res Commun 39:7–12. doi:10.1016/0006-291X(70)90749-7

    Article  CAS  PubMed  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650. doi:10.1016/0140-6736(93)90417-F

    Article  CAS  PubMed  Google Scholar 

  • Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS (2015) Fluoroquinolones for the treatment of tuberculosis in children. Tuberculosis (Edinb) 95:229–245. doi:10.1016/j.tube.2015.02.037

    Article  CAS  Google Scholar 

  • Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62:1220–1227. doi:10.1111/j.1365-2958.2006.05467.x

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RP, Bisht SS, Ajay A, Sharma A, Misra M, Gupt MP (2012) Developments in chemical approaches to treat tuberculosis in the last decade. Curr Med Chem 19:488–517. doi:10.2174/092986712798918815

    Article  CAS  PubMed  Google Scholar 

  • Tupin A, Gualtieri M, Roquet-Baneres F, Morichaud Z, Brodolin K, Leonetti JP (2010) Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. Int J Antimicrob Agents 35:519–523. doi:10.1016/j.ijantimicag.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  • Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54:579–581. doi:10.1093/cid/cir889

    Article  PubMed  Google Scholar 

  • Vale N, Gomes P, Santos HA (2013) Metabolism of the antituberculosis drug ethionamide. Curr Drug Metab 14:151–158. doi:10.2174/1389200211309010151

    Article  CAS  PubMed  Google Scholar 

  • Van den BJ, Kibiki GS, Kisanga ER, Boeree MJ, Aarnoutse RE (2009) New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob Agents Chemother 53:849–862. doi:10.1128/AAC.00749-08

    Article  CAS  Google Scholar 

  • Van Heeswijk RP, Dannemann B, Hoetelmans RM (2014) Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 69:2310–2318. doi:10.1093/jac/dku171

    Article  CAS  PubMed  Google Scholar 

  • Vannelli TA, Dykman A, Ortiz de Montellano PR (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277:12824–12829. doi:10.1074/jbc.M110751200

    Article  CAS  PubMed  Google Scholar 

  • Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH, Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425. doi:10.1378/chest.08-2427

    Article  PubMed  Google Scholar 

  • Velayati AA, Farnia P, Masjedi MR (2013) The totally drug resistant tuberculosis (TDR-TB). Int J Clin Exp Med 6:307–309

    PubMed  PubMed Central  Google Scholar 

  • Vilcheze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50. doi:10.1146/annurev.micro.61.111606.122346

    Article  CAS  PubMed  Google Scholar 

  • Vilcheze C, Jacobs WR Jr (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2:MGM2-2013. doi:10.1128/microbiolspec.MGM2-0014-2013

    Article  CAS  Google Scholar 

  • Von Delft A, Dramowski A, Khosa C, Kotze K, Lederer P, Mosidi T, Peters JA, Smith J, van der Westhuizen HM, von Delft D, Willems B, Bates M, Craig G, Maeurer M, Marais BJ, Mwaba P, Nunes EA, Nyirenda T, Oliver M, Zumla A (2015) Why healthcare workers are sick of TB. Int J Infect Dis 32:147–151. doi:10.1016/j.ijid.2014.12.003

    Article  PubMed  Google Scholar 

  • Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR Jr, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78. doi:10.1084/jem.20062100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman S, Meintjes G (2014) The diagnosis, management and prevention of HIV-associated tuberculosis. S Afr Med J 104:886–893

    Article  CAS  PubMed  Google Scholar 

  • Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, Nuermberger E (2009) Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother 53:1314–1319. doi:10.1128/AAC.01182-08

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 108:19371–19376. doi:10.1073/pnas.1109201108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2009) Management of MDR-TB: a field guide: a companion document to guidelines for programmatic management of drug-resistant tuberculosis: Integrated Management of Adolescent and Adult Illness (IMAI). WHO, Geneva

    Google Scholar 

  • Yew WW, Wong CF, Wong PC, Lee J, Chau CH (1993) Adverse neurological reactions in patients with multidrug-resistant pulmonary tuberculosis after coadministration of cycloserine and ofloxacin. Clin Infect Dis 17:288–289. doi:10.1093/clinids/17.2.288

    Article  CAS  PubMed  Google Scholar 

  • Zaske D, Crossley K (1978) Amikacin. A new aminoglycoside antibiotic. Minn Med 61:123–126

    CAS  PubMed  Google Scholar 

  • Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795. doi:10.1093/jac/dkg446

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Sala C, Dhar N, Vocat A, Sambandamurthy VK, Sharma S, Marriner G, Balasubramanian V, Cole ST (2014) In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:3217–3223. doi:10.1128/AAC.02410-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K, Camacho LR (2013) para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288:23447–23456. doi:10.1074/jbc.M113.475798

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, He Y, Zhang X, Xu J, Luo Y, Wang Y, Franzblau SG, Yang Z, Chan RJ, Liu Y, Zheng J, Zhang ZY (2010) Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 107:4573–4578. doi:10.1073/pnas.0909133107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Zhang Y, Shen Y, Siu GK, Wu W, Qian X, Deng G, Xu Y, Lau R, Fan X, Zhang W, Lu H, Yam WC (2012) Molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates from Shanghai, China. Diagn Microbiol Infect Dis 73:260–263. doi:10.1016/j.diagmicrobio.2012.03.025

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Friedrich SO, Diacon A, Wallis RS (2014) Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob Agents Chemother 58:3306–3311. doi:10.1128/AAC.01920-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziganshina LE, Titarenko AF, Davies GR (2013) Fluoroquinolones for treating tuberculosis (presumed drug-sensitive). Cochrane Database Syst Rev 6:CD004795. doi:10.1002/14651858

    Google Scholar 

  • Zimhony O, Cox JS, Welch JT, Vilcheze C, Jacobs WR Jr (2000) Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6:1043–1047. doi:10.1038/79558

    Article  CAS  PubMed  Google Scholar 

  • Zimhony O, Vilcheze C, Arai M, Welch JT, Jacobs WR Jr (2007) Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob Agents Chemother 51:752–754. doi:10.1128/AAC.01369-06

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andaleeb Sajid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sajid, A., Arora, G., Virmani, R., Singhal, A. (2017). Antimycobacterial Agents: To Target or Not to Target. In: Kalia, V. (eds) Microbial Applications Vol.2. Springer, Cham. https://doi.org/10.1007/978-3-319-52669-0_4

Download citation

Publish with us

Policies and ethics