Skip to main content

Bioproduction of Polyhydroxyalkanoate from Plant Oils

  • Chapter
  • First Online:
Microbial Applications Vol.2

Abstract

There is a global rise in interest for sustainable biomass-based polymers as promising new material, due to their pronounced advantages such as renewability, biodegradability, and comparable properties to those plastics derived from fossil oil. Several efforts have been made in tackling numerous challenges and drawbacks, especially those focusing on expanding the horizon of bioplastic usage, improvement in polymer properties, processing methods, and cost-effective production. Plant oils and fatty acids derived from them have been used by polymer technologists for the production of a biodegradable polymer, polyhydroxyalkanoates (PHA), using microbial organisms such as Ralstonia eutropha and Escherichia coli. This chapter will review the literature reporting the perspectives and opportunities in the field of PHA production from plant oils such as corn oil, jatropha oil, palm-based oil, soybean oil, as well as their various fatty acids as feedstocks. The abundance of naturally growing plants that are rich in oils and fats, their relatively low price, and their rich application possibilities make them the most important renewable feedstock in the green plastic industry. This chapter also discusses some introductory concepts about polyhydroxyalkanoates with regard to their engineering applications. Moreover, their properties as well as effective processing techniques, along with the various strategies implemented for their potential commercial applications, have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29:396–403

    Google Scholar 

  • Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol 37:698–701. doi:10.1007/bf00174830

    Article  CAS  Google Scholar 

  • Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194. doi:10.1016/S0141-3910(02)00400-7

    Article  CAS  Google Scholar 

  • Aoyagi Y, Doi Y, Iwata T (2003) Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: Effects of annealing and two-step drawing. Polym Degrad Stab 79:209–216. doi:10.1016/S0141-3910(02)00273-2

    Article  CAS  Google Scholar 

  • Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym Degrad Stab 93:17–23. doi:10.1016/j.polymdegradstab.2007.11.004

    Article  CAS  Google Scholar 

  • Biddlestone F, Harris A, Hay JN, Hammond T (1996) The physical ageing of amorphous poly(hydroxybutyrate). Polym Int 39:221–229. doi:10.1002/(SICI)1097-0126(199603)39:3<221::AID-PI511>3.0.CO;2-O

    Article  CAS  Google Scholar 

  • Budde C, Riedel S, Hübner F, Risch S, Popović M, Rha C, Sinskey A (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89:1611–1619. doi:10.1007/s00253-011-3102-0

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265–2270. doi:10.1016/j.biortech.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125:29–45. doi:10.1007/10_2010_89

    CAS  PubMed  Google Scholar 

  • Choi JI, Lee S (2004) High level production of supra molecular weight poly (3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol Bioprocess Eng 9:196–200. doi:10.1007/bf02942292

    Article  CAS  Google Scholar 

  • Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, Chen GQ (2011) Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-Oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12:3559–3566. doi:10.1021/bm200770m

    Article  CAS  PubMed  Google Scholar 

  • da Cruz Pradella J, Ienczak J, Delgado C, Taciro M (2012) Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34:1003–1007. doi:10.1007/s10529-012-0863-1

    Article  CAS  Google Scholar 

  • Davis R, Anilkumar P, Chandrashekar A, Shamala T (2008) Biosynthesis of polyhydroxyalkanoates co-polymer in E. coli using genes from Pseudomonas and Bacillus. Antonie Van Leeuwenhoek 94:207–216. doi:10.1007/s10482-008-9233-3

    Article  CAS  PubMed  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111. doi:10.1016/0141-8130(90)90061-E

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Kanesawa Y, Tanahashi N, Kumagai Y (1992) Biodegradation of microbial polyesters in the marine environment. Polym Degrad Stab 36:173–177. doi:10.1016/0141-3910(92)90154-W

    Article  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828. doi:10.1021/ma00118a007

    Article  CAS  Google Scholar 

  • Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31:8921–8930. doi:10.1016/j.biomaterials.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  • Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12:292–304. doi:10.1016/0142-9612(91)90037-B

    Article  CAS  PubMed  Google Scholar 

  • Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC. Trends Anal Chem 29:84–100. doi:10.1016/j.trac.2009.09.005

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336. doi:10.1007/s002530051178

    Article  CAS  PubMed  Google Scholar 

  • Galego N, Rozsa C, Sánchez R, Fung J, Analıa V, Santo TJ (2000) Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19:485–492. doi:10.1016/S0142-9418(99)00011-2

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P, Catalá R, Gavara R (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. doi:10.1016/j.tifs.2013.10.008

    Article  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653. doi:10.1016/j.energy.2008.06.002

    Article  CAS  Google Scholar 

  • Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605. doi:10.1007/s10924-012-0527-1

    Article  CAS  Google Scholar 

  • Han J, Wu LP, Hou J, Zhao D, Xiang H (2015) Biosynthesis, characterization, and hemostasis potential of tailor-made poly (3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules 16:578–588. doi:10.1021/bm5016267

    Article  CAS  PubMed  Google Scholar 

  • Hansen SB, Padfield R, Syayuti K, Evers S, Zakariah Z, Mastura S (2015) Trends in global palm oil sustainability research. J Clean Prod 100:140–149. doi:10.1016/j.jclepro.2015.03.051

    Article  Google Scholar 

  • Insomphun C, Mifune J, Orita I, Numata K, Nakamura S, Fukui T (2014) Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J Biosci Bioeng 117(2):184–190. doi:10.1016/j.jbiosc.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, Takeuchi A, Uesugi K (2004) Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-ray diffraction with synchrotron radiation. Macromol Rapid Commun 25:1100–1104. doi:10.1002/marc.200400110

    Article  CAS  Google Scholar 

  • Jing L, Fang Y, Ying X, Wenxing H, Meng X, Syed MN, Fang C (2005) Toxic impact of ingested Jatropherol-I on selected enzymatic activities and the ultrastructure of midgut cells in silkworm, Bombyx mori L. J Appl Entomol 129:98–104. doi:10.1111/j.1439-0418.2005.00939.x

    Article  CAS  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86. doi:10.1016/S0141-3910(03)00227-1

    Article  CAS  Google Scholar 

  • Kahar P, Agus J, Kikkawa Y, Taguchi K, Doi Y, Tsuge T (2005) Effective production and kinetic characterization of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab 87:161–169. doi:10.1016/j.polymdegradstab.2004.08.002

    Article  CAS  Google Scholar 

  • Kang Z, Du L, Kang J, Wang Y, Wang Q, Liang Q, Qi Q (2011) Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Bioresour Technol 102:6600–6604. doi:10.1016/j.biortech.2011.03.070

    Article  CAS  PubMed  Google Scholar 

  • Kawashima Y, Cheng W, Mifune J, Orita I, Nakamura S, Fukui T (2012) Characterization and functional analyses of R-specific enoyl coenzyme-A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha. Appl Environ Microbiol 78:493–502. doi:10.1128/AEM.06937-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kek YK, Chang CW, Amirul AA, Sudesh K (2010) Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHB−4 mutant for the production of poly(3-hydroxybutyrate) and its copolymers. World J Microbiol Biotechnol 26:1595–1603. doi:10.1007/s11274-010-0335-5

    Article  CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005a) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619. doi:10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005b) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40:2173–2182. doi:10.1016/j.procbio.2004.08.011

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Bucci D (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29: 275–285. doi:10.15255/CABEQ.2014.2260

  • Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB (2011) Preparation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–320. doi:10.1016/j.ejps.2011.08.013

    Article  PubMed  Google Scholar 

  • Kim B (2002) Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol Lett 24:125–130. doi:10.1023/a:1013898504895

    Article  CAS  Google Scholar 

  • Kusaka S, Abe H, Lee S, Doi Y (1997) Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl Microbiol Biotechnol 47:140–143. doi:10.1007/s002530050902

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Tan KT, Lee KT, Mohamed AR (2009) Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renew Sust Energ Rev 13:1456–1464. doi:10.1016/j.rser.2008.09.009

    Article  CAS  Google Scholar 

  • Lampinen J (2010) Trends in bioplastics and biocomposites. Developments in advanced biocomposites. VTT Technical Research Centre of Finland, Finland 12–20

    Google Scholar 

  • Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99:6844–6851. doi:10.1016/j.biortech.2008.01.051

    Article  CAS  PubMed  Google Scholar 

  • Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q (2012) Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol 12:53. doi:10.1186/1472-6750-12-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chang H, Luo H, Wang Z, Zheng G, Lu X, He X, Chen F, Wang T, Liang J (2015) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A 103:1169–1175. doi:10.1002/jbm.a.35265

    Article  PubMed  Google Scholar 

  • Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17. doi:10.1016/j.ymben.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  • Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410. doi:10.1007/s10529-005-0690-8

    Article  CAS  PubMed  Google Scholar 

  • López-Cuellar M, Alba-Flores J, Rodríguez JG, Pérez-Guevara F (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80. doi:10.1016/j.ijbiomac.2010.09.016

    Article  PubMed  Google Scholar 

  • Ma L, Zhang H, Liu Q, Chen J, Zhang J, Chen G-Q (2009) Production of two monomer structures containing medium-chain-length polyhydroxyalkanoates by β-oxidation-impaired mutant of Pseudomonas putida KT2442. Bioresour Technol 100:4891–4894. doi:10.1016/j.biortech.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  • Majid MIA, Hori K, Akiyama M, Doi Y (1994) Production of poly (3-hydroxybutyrate) from plant oils by Alcaligenes sp. Biodegrad Plast Polym:417–424. doi:10.1016/B978-0-444-81708-2.50045-2

  • Majid MIA, Akmal DH, Few LL, Agustien A, Toh MS, Samian MR, Najimudin N, Azizan MN (1999) Production of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Erwinia sp. USMI-20. Int J Biol Macromol 25:95–104. doi:10.1016/S0141-8130(99)00020-3

    Article  CAS  PubMed  Google Scholar 

  • Masood F, Chen P, Yasin T, Hasan F, Ahmad B, Hameed A (2013) Synthesis of poly-(3-hydroxybutyrate-co-12 mol % 3-hydroxyvalerate) by Bacillus cereus FB11: its characterization and application as a drug carrier. J Mater Sci Mater Med 24:1927–1937. doi:10.1007/s10856-013-4946-x

    Article  CAS  PubMed  Google Scholar 

  • Mifune J, Nakamura S, Fukui T (2008) Targeted engineering of Cupriavidus necator chromosome for biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Can J Chem 86:621–627. doi:10.1139/v08-047

    Article  Google Scholar 

  • Moita R, Freches A, Lemos P (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20. doi:10.1016/j.watres.2014.03.066

    Article  CAS  PubMed  Google Scholar 

  • Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, KwiecieÅ„ M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M (2013) Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym 73:1391–1398. doi:10.1016/j.reactfunctpolym.2012.12.009

    Article  CAS  Google Scholar 

  • Naylor LA, Wood JC (1999) US Patent No. 5, 871, 980. U.S. Patent (Monsato) http://patentimages.storage.googleapis.com/pdfs/US5871980.pdf

  • Nduko JM, Suzuki W, Ki M, Kobayashi H, Ooi T, Fukuoka A, Taguchi S (2012) Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural. J Biosci Bioeng 113:70–72. doi:10.1016/j.jbiosc.2011.08.021

    Article  CAS  PubMed  Google Scholar 

  • Ng KS, Ooi WY, Goh LK, Shenbagarathai R, Sudesh K (2010) Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stab 95:1365–1369. doi:10.1016/j.polymdegradstab.2010.01.021

    Article  CAS  Google Scholar 

  • Ng KS, Wong YM, Tsuge T, Sudesh K (2011) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochem 46:1572–1578. doi:10.1016/j.procbio.2011.04.012

    Article  CAS  Google Scholar 

  • Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I (2015) Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90:1209–1221. doi:10.1002/jctb.4685

    Article  CAS  Google Scholar 

  • Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297–4306. doi:10.1128/JB.182.10.2978-2981.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z (2010) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 32:1925–1932. doi:10.1007/s10529-010-0376-8

    Article  CAS  PubMed  Google Scholar 

  • Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3:18–24. doi:10.5897/AJB2004.000-2004

    Article  CAS  Google Scholar 

  • Ouyang S-P, Luo RC, Chen S-S, Liu Q, Chung A, Wu Q, Chen G-Q (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511. doi:10.1021/bm0702307

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Kim BS (2011) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol 28:719–724. doi:10.1016/j.nbt.2011.01.007

    Article  CAS  Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. doi:10.1016/j.tifs.2013.06.003

    Article  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247. doi:10.1002/jctb.1667

    Article  CAS  Google Scholar 

  • Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CMC, Schomburg D, Prieto MA, dos Santos VAM (2012) The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single-and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Microb Cell Fact 11:34. doi: 10.1186/1475-2859-11-34

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380. doi:10.1016/S0309-1740(02)00121-3

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Yunos DM, Boccaccini AR, Knowles JC, Barker IA, Howdle SM, Tredwell GD, Keshavarz T, Roy I (2011) Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 12:2126–2136. doi:10.1021/bm2001999

    Article  CAS  PubMed  Google Scholar 

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109:74–83. doi:10.1002/bit.23283

    Article  CAS  PubMed  Google Scholar 

  • Saika A, Ushimaru K, Mizuno S, Tsuge T (2015) Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha. J Bacteriol 197:1350–1359. doi:10.1128/JB.02474-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Kanazawa H, Tsuge T (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 90:951–959. doi:10.1007/s00253-011-3150-5

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ishii N, Hamada Y, Abe H, Tsuge T (2012) Utilization of 2-alkenoic acids for biosynthesis of medium-chain-length polyhydroxyalkanoates in metabolically engineered Escherichia coli to construct a novel chemical recycling system. Polym Degrad Stab 97:329–336. doi:10.1016/j.polymdegradstab.2011.12.007

    Article  CAS  Google Scholar 

  • Sato S, Fujiki T, Matsumoto K (2013) Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain. J Biosci Bioeng 116:677–681. doi:10.1016/j.jbiosc.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Maruyama H, Fujiki T, Matsumoto K (2015) Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J Biosci Bioeng 120:246–251. doi:10.1016/j.jbiosc.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Doi Y (1994) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16:99–104. doi:10.1016/0141-8130(94)90022-1

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174. doi:10.1002/(sici)1097-0126(199603)39:3<169::aid-pi453>3.0.co;2-z

    Article  CAS  Google Scholar 

  • Shang L, Yim SC, Park HG, Chang HN (2004) Sequential Feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnol Prog 20:140–144. doi:10.1021/bp034232o

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15:719–728. doi:10.1023/B:JMSM.0000030215.49991.0d

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013. doi: 10.1155/2013/581684

  • Tan G-Y, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754. doi:10.3390/polym6030706

    Article  Google Scholar 

  • Tanadchangsaeng N, Kitagawa A, Yamamoto T, Abe H, Tsuge T (2009) Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromolecules 10:2866–2874. doi:10.1021/bm900696c

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946. doi:10.1021/ma0527505

    Article  CAS  Google Scholar 

  • Tappel RC, Wang Q, Nomura CT (2012) Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli. J Biosci Bioeng 113:480–486. doi:10.1016/j.jbiosc.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584. doi:10.1016/S1389-1723(02)80198-0

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99:6231–6240. doi:10.1007/s00253-015-6777-9

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Taguchi K, Taguchi S, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid ß-oxidation. Int J Biol Macromol 31:195–205. doi:10.1016/S0141-8130(02)00082-X

    Article  CAS  PubMed  Google Scholar 

  • Türesin F, Gürsel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed 12:195–207. doi:10.1163/156856201750180924

    Article  PubMed  Google Scholar 

  • Wang F, Lee SY (1997) Production of poly (3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63(12):4765–4769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Environ Microbiol 89:1497–1507. doi:10.1007/s00253-010-2964-x

    CAS  Google Scholar 

  • Wang L, Wang X, Zhu W, Chen Z, Pan J, Xu K (2010) Effect of nucleation agents on the crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB). J Appl Polym Sci 116:1116–1123. doi:10.1002/app.31588

    Article  CAS  Google Scholar 

  • Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. doi:10.1016/j.biomaterials.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Immobil Biotechnol 37:1–12. doi:10.1080/10731190802664429

    Article  PubMed  Google Scholar 

  • Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K (2012) Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121:320–327. doi:10.1016/j.biortech.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909. doi:10.1039/C0GC00264J

    Article  CAS  Google Scholar 

  • Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101:4508–4512. doi:10.1016/j.biortech.2010.01.073

    Article  CAS  PubMed  Google Scholar 

  • Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH, Xiong YC, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830. doi:10.1016/j.biomaterials.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  • Ying TH, Ishii D, Mahara A, Murakami S, Yamaoka T, Sudesh K, Samian R, Fujita M, Maeda M, Iwata T (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29:1307–1317. doi:10.1016/j.biomaterials.2007.11.031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeharu Tsuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fadzil, F.I.B.M., Tsuge, T. (2017). Bioproduction of Polyhydroxyalkanoate from Plant Oils. In: Kalia, V. (eds) Microbial Applications Vol.2. Springer, Cham. https://doi.org/10.1007/978-3-319-52669-0_13

Download citation

Publish with us

Policies and ethics