Skip to main content

Fungi Imperfecti Laccase: Biotechnological Potential and Perspectives

  • Chapter
  • First Online:
Microbial Applications Vol.2

Abstract

Laccase is a multicopper oxidase enzyme (EC 1.10.3.2, benzenediol: oxygen oxidoreductase) which belonged to polyphenol oxidases. A laccase enzyme is produced by plant, bacteria, insects, and fungi. Among the fungi, laccase is produced by many sexually reproducing fungal species and occupied their position in established taxonomic classifications of fungi. In contrast, laccase is also produced by other asexually reproducing fungi. These are called as Fungi imperfecti/Deuteromycetes. Laccases produced by deuteromyces are used in various biotechnological applications such as wastewater treatment, detoxification or discoloration of industrial effluents, dye degradation, bleaching of pulp and papers and textiles in industries, biofuel or bioethanol production, wine and beer making, synthesis of organic compounds, and bioremediation—for degradation of pesticides, polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), synthetic polymers, explosives, and synthetic dyes. It will definitely have great contribution in diverse settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaie-Khouzani M, Forootanfar H, Moshfegh M, Khoshayand MR, Faram MA (2012) Decolorization of some synthetic dyes using optimized culture broth of laccase producing ascomycete Paraconiothyrium variabile. Biochem Eng J 60:9–15. doi:10.1016/j.bej.2011.09.002

    Article  CAS  Google Scholar 

  • Azri MFDB, Zulkharnain AB, Husaini AASA, Ahmad SAB (2015) The degradation of carbazole and the production of ligninolytic enzyme by isolated marine fungi. J Chem Pharm Sci 8:330–335

    Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96. doi:10.1126/science.1065659

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74. doi:10.1111/j.1574-4976.2005.00010.x

    Article  CAS  PubMed  Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333. doi:10.1021/bi0201318

    Article  CAS  PubMed  Google Scholar 

  • Borras E, Blanquez P, Sarra M, Caminal G, Vicent T (2008) Trametes versicolor pellets production: low-cost medium scale-up. J Biochem Eng 42:61–66. doi:10.1016/j.bej.2008.05.014

    Article  CAS  Google Scholar 

  • Bressler DC, Fedorak PM, Pickard MA (2000) Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol Lett 22:1119–1125. doi:10.1023/A:1005633212866

    Article  CAS  Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzyme Res 149748:10. doi:10.4061/2010/149748

    Google Scholar 

  • Capone S, Ćorajević L, Bonifert G, Murth P, Maresch D, Altmann F, Herwig C, Spadiut O (2015) Combining protein and strain engineering for the production of glyco-engineered horseradish peroxidase C1A in Pichia pastoris. Int J Mol Sci 16:23127–23142. doi:10.3390/ijms161023127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950. doi:10.1016/j.biortech.2006.07.047

    Article  CAS  PubMed  Google Scholar 

  • Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3:98–124. doi:10.3923/ajbkr.2011.98.124

    Article  CAS  Google Scholar 

  • Devi VM, Inbathamizh L, Ponnu TM, Premalatha S, Divya M (2012) Dye decolorization using fungal laccase. Bull Environ Pharmacol Life Sci 1:63–71

    Google Scholar 

  • Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050. doi:10.1016/j.biortech.2010.02.110

    Article  CAS  PubMed  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. doi:10.1093/nar/gkl282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forgacsa E, Cserhatia T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. doi:10.1016/j.envint.2004.02.001

    Article  Google Scholar 

  • Gedikli S, Aytar P, Buruk Y, Apohan E, Cabuk A, Yesilada O, Burna N (2014) Laccase production and dye decolorization by Trametes versicolor: application of Taguchi and Box-Behnken methodologies. Turk J Biochem 39:298–306. doi:10.5505/tjb.2014.62533

    Article  CAS  Google Scholar 

  • Huifang X, Li Q, Wang M, Zhao L (2013) Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system. J Microbiol Biotechnol 23:864–871. doi:10.4014/jmb.1212.12057

    Article  Google Scholar 

  • Kiro M (2013) Production and applications of laccase enzyme in textile industry. Tekstilna industrija 61:11–15

    Google Scholar 

  • Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304. doi:10.1016/j.biortech.2011.11.080

    Article  CAS  PubMed  Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcade M (2007) Fungal laccases – a versatile enzyme for biotechnological applications. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, Spain, pp 233–244

    Google Scholar 

  • Lantto R, Schonberg C, Buchert J, Heine E (2004) Effects of laccase-mediator combinations on wool. Text Res J 74:713–717. doi:10.1177/004051750407400809

    Article  CAS  Google Scholar 

  • Li J, Zhang N, Ye B, Ju W, Orser B, Fox JEM, Wheeler MB, Wang Q, Lu WY (2007) Non-steroidal anti-inflammatory drugs increase insulin release from beta cells by inhibiting ATP-sensitive potassium channels. Br J Pharmacol 151:483–493. doi:10.1038/sj.bjp.0707259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li X, Tang W, Zhao J, Qu Y (2008) Screening of a fungus capable of powerful and selective delignification on wheat straw. Lett Appl Microbiol 47:415–420. doi:10.1111/j.1472-765X.2008.02447.x

    Article  CAS  PubMed  Google Scholar 

  • Lo SC, Ho YS, Buswell JA (2002) Effect of phenolic monomers on the production of laccases by the edible mushroom Pleurotus sajor-caju and partial characterization of a major laccase component. Mycologia 93:413–421. doi:10.2307/3761726

    Article  Google Scholar 

  • Lu C, Wang H, Luo Y, Guo L (2010) An efficient system for predelignification of gramineous biofuel feedstock in vitro: application of a laccase from Pycnoporus sanguineus H275. Process Biochem 45:1141–1147. doi:10.1016/j.procbio.2010.04.010

    Article  CAS  Google Scholar 

  • Margot J, Granier CB, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. doi:10.1186/2191-0855-3-63

    Article  PubMed  PubMed Central  Google Scholar 

  • Martın C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzym Microb Technol 31:274–282. doi:10.1016/S0141-0229(02)00112-6

    Article  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2007) Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour Technol 98:158–164

    Article  CAS  PubMed  Google Scholar 

  • Mogharabi M, Faramarzi MA (2014) Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv Synth Catal 356:897–927. doi:10.1002/adsc.201300960

    Article  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) Blue laccases. Biochemistry 72:1136–1150. doi:10.1134/S0006297907100112

    CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al (2009) AutoDock4 and AutoDocktools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougin C, Kollmann A, Jolivalt C (2002) Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnol Lett 24:139–142. doi:10.1023/A:1013802713266

    Article  CAS  Google Scholar 

  • Nigam P, Gupta N, Anthwal A (2009) Pre-treatment of agro-industrial residues. In: Nigam P, Pandey A (eds) Biotechnology for Agro-industrial residues utilization. Springer, Netherlands, pp 13–33. doi:10.1007/978-1-4020-9942-7_2

    Chapter  Google Scholar 

  • Niku-Paavola ML, Viikari L (2000) Enzymatic oxidation of alkenes. J Mol Catal 10:435–444. doi:10.1016/S1381-1177(99)00117-4

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. doi:10.1016/S0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  • Pannu JS, Kapoor RK (2014) Microbial laccases: a mini-review on their production, purification and applications. Int J Pharm Arch 3:528–536

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:7663–37669. doi:10.1074/jbc.M204571200

    Article  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23. doi:10.1186/s40643-015-0049-5

    Article  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. doi:10.1007/s002530100745

    Article  CAS  PubMed  Google Scholar 

  • Poutou-Piñales RA, Córdoba-Ruiz HA, Barrera-Avellaneda LA, Delgado-Boada JM (2010) Carbon source feeding strategies for recombinant protein expression in Pichia pastoris and Pichia methanolica. Afr J Biotechnol 9:2173–2184

    Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal 30:19–24. doi:10.1016/j.molcatb.2004.03.005

    Article  CAS  Google Scholar 

  • Pozdnyakova N, Turkovskaya O, Yudina E, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42:63–69. doi:10.1134/S000368380601008X

    Article  Google Scholar 

  • Raghukumar C (2000) Fungi from marine habitats: an application in bioremediation. Mycol Res 104:1222–1226. doi:10.1017/S095375620000294X

    Article  CAS  Google Scholar 

  • Rameshaiah GN, Reddy MLJ (2015) Applications of ligninolytic enzymes from a white-rot fungus Trametes versicolor. Univers J Environ Res Technol 1:1–7

    Google Scholar 

  • Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, Rodríguez-Vázquez R, Delgado-Boada JM (2013) Fungal laccases. Fungal Biol Rev 27:67–82. doi:10.1016/j.fbr.2013.07.001

    Article  Google Scholar 

  • Rivera-Hoyos CM, Morales-Álvarez ED, Poveda-Cuevas SA, Reyes-Guzmán EA, Poutou-Piñales RA, Reyes-Montaño EA et al (2015) Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS One 10:e0116524. doi:10.1371/journal.pone.0116524

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martínez AT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506. doi:10.1016/j.biortech.2011.05.027

    Article  CAS  PubMed  Google Scholar 

  • Samaras VG, Thomaidis NS, Stasinakis AS, Gatidou G, Lekkas TD (2010) Determination of selected non-steroidal anti-inflammatory drugs in wastewater by gas chromatography-mass spectrometry. Int J Environ Anal Chem 90:219–229. doi:10.1080/03067310903243936

    Article  CAS  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme e laccase e in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210. doi:10.1016/j.ibiod.2012.03.001

    Article  CAS  Google Scholar 

  • Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification and potential biotechnological applications. Enzyme Res 11:217861. doi: 10.4061/2011/217861

  • Stack CM, Dalton JP, Cunneen M, Donnelly S (2005) De-glycosylation of Pichia pastoris-produced Schistosoma mansoni cathepsin B eliminates non-specific reactivity with IgG in normal human serum. J Immunol Methods 304:151–157. doi:10.1016/j.jim.2005.07.019

    Article  CAS  PubMed  Google Scholar 

  • Steinle A, Witthoff S, Krause JP, Steinbüchel A (2010) Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Appl Environ Microbiol 76:1062–1070. doi:10.1128/AEM.01659-09

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Peng R-H, Xiong AS, Tian Y, Zhao W, Xu H, Liu DT, Chen JM, Yao QH (2012) Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071–9 in Pichia pastoris. Mol Biol Rep 39:3807–3814. doi:10.1007/s11033-011-1158-7

    Article  CAS  PubMed  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal 46:1–15. doi:10.1016/S0926-3373(03)00228-5

    Article  CAS  Google Scholar 

  • Travares APM, Cristovao RO, Gamelas JAF et al (2009) Sequential decolourization of reactive textile dyes by laccase mediator system. J Chem Technol Biotechnol 84:442–446. doi:10.1002/jctb.2060

    Article  Google Scholar 

  • Vadapally P, Gudikandula K, Maringanti SC (2015) Isolation, screening and, identification of laccase producing fungi from eturnagaram forest, Warangal district, Telangana, India. Sci Technol Arts Res J 4:120–123. doi:10.4314/star.v4i1.20

    Article  Google Scholar 

  • Valls C, Colom JF, Baffert C, Gimbert I, Roncero MB et al (2010) Comparing the efficiency of the laccase-NHA and laccase-HBT systems in eucalyptus pulp bleaching. Biochem Eng J 49:401–407. doi:10.1016/j.bej.2010.02.002

    Article  CAS  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 163242:21. doi: 10.1155/2014/163242

  • Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102:7507–7512. doi:10.1016/j.biortech.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  PubMed  Google Scholar 

  • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633. doi:10.1093/nar/gkp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos N (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187. doi:10.1016/j.biotechadv.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  • Yanto DHY, Tachibana S (2013) Biodegradation of petroleum hydrocarbon by newly isolated Pestalotiopsis sp., NG007. Int Biodeterior Biodegrad 85:438–450. doi:10.1016/j.ibiod.2013.09.008

    Article  CAS  Google Scholar 

  • Yanto DHY, Tachibana S, Itoh K (2014) Biodecoloration and biodegradation of textile dyes by newly isolated saline pH tolerant fungus Pestalotiopsis sp. J Environ Sci Technol 7:44–55. doi:10.3923/jest.2014.44.55

    Article  CAS  Google Scholar 

  • Zhao D, Zhang X, Cui D, Zhao M (2012) Characterisation of a novel white laccase from the Deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes. PLoS One 7:e38817. doi:10.1371/journal.pone.0038817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Yanyang S, Renpeng D, Li Z, Jingping G (2015) Optimization of fermentation parameters for laccase production by a novel deuteromycete fungus Myrothecium Verrucaria NF-05 using response surface methodology. Int Conf Civil Mater Environ Stud 425–427. doi: 10.2991/cmes-15.2015.118

Download references

Acknowledgment

The authors wish to thank Dr. V.C. Kalia (Chief Scientist, CSIR-Institute of Genomics and Integrative Biology, Professor, Academy of Scientific and Innovative Research, Delhi University Campus, Delhi (India)) for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Rekadwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rekadwad, B., Khobragade, C. (2017). Fungi Imperfecti Laccase: Biotechnological Potential and Perspectives. In: Kalia, V. (eds) Microbial Applications Vol.2. Springer, Cham. https://doi.org/10.1007/978-3-319-52669-0_11

Download citation

Publish with us

Policies and ethics