Skip to main content

Role of Bacteria in Nanocompound Formation and Their Application in Medical

  • Chapter
  • First Online:
Microbial Applications Vol.2

Abstract

Nanotechnology has now reached to a stage where the nanoparticles (NPs) have been in applicability in wide-ranging realms of science and technology. NPs are the materials with at least one dimension in the order of 100 nm or less. NPs display astonishing properties of high surface/volume ratio and enhanced physical, chemical, optical, and thermal properties which are extremely different than their bulk materials. The conventional methods of synthesis of nanocompounds involve the employment of physical and chemical methods, which have few drawbacks such as the requirement of toxic hazardous chemicals, energy intensive, and costly processes make it difficult to be widely implemented. To overcome these limitations, the researchers have looked forward for an easy and feasible alternative approach for the synthesis of nanocompounds. The employment of alternative biogenic route for the NP synthesis by using biological entities of unicellular living organisms such as bacteria, fungi, and actinomycetes has sought apparent attention of the scientists throughout the global earth. A greener approach interconnecting nanobiology with microbial biotechnology is responsible for the formation of NPs mediated by microbes that allow synthesis in aqueous environment, with low energy consumption and at low costs. Biosynthesis of gold, silver, copper, quantum dots, and magnetite NPs by bacteria, fungi, actinomycetes, and yeasts has been reported. In a view to form noble metal NPs of uniform shape and size, biological routes using microbial cultures at optimal temperature, pressure, and pH have been formulated. In this chapter, the main focus is given on the intracellular and extracellular approaches used for synthesis of metallic NPs by various microbial species. A detailed discussion is provided to explain the various factors which affect the synthesis of nanocompounds to further augment the growth rate of NPs as well as the mechanism of action at the cellular, biochemical, and molecular level. A great stress is given on the role of these nanocompounds in the medical field for the diagnostic and disease treatment. The potential of great biodiversity of microbial cultures as biological candidates leading to the manufacturing of NPs is needed to be fully investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2013) Green biosynthesis of gold nanoparticles using Galaxaura elongate and characterization of their antibacterial activity. Arab J Chem. doi:10.1016/j.arabjc.2013.11.044

    Google Scholar 

  • Ali J, Zainab S, Ali N (2015) Green synthesis of metal nanoparticles by microorganisms; a current prospective. J Nanoanal 2:32–38. doi:10.3390/ma8115377

    Google Scholar 

  • Alkaladi A, Abdelazim AM, Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15:2015–2023. doi:10.3390/ijms15022015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alphandery E, Ngo AT, Lefevre C, Lisiecki I, Wu LF, Pileni MP (2008) Difference between the magnetic properties of the magnetotactic bacteria and those of the extracted magnetosomes: influence of the distance between the chains of magnetosomes. J Phys Chem C 112:12304–12309. doi:10.1021/jp800408t

    Article  CAS  Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999. doi:10.1098/rsif.2008.0170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashajyothi C, Jahanara K, Chandrakanth RK (2014) Biosynthesis and characterization of copper nanoparticles from Enterococcus faecalis. Int J Pharm Bio Sci 5:204–211

    CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139. doi:10.1007/s10529-006-9063-1

    Article  CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70:142–146. doi:10.1016/j.colsurfb.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–335

    CAS  PubMed  Google Scholar 

  • Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, Tan W (2012) Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6:3974–3981. doi:10.1021/nn3002328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2010a) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481–489. doi:10.1007/s12274-010-0008-6

    Article  CAS  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010b) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541. doi:10.1016/j.actbio.2010.03.030

    Article  CAS  PubMed  Google Scholar 

  • Barabadi H, Honary S, Ebrahimi P, Mohammadi MA, Alizadeh A, Naghibi F (2014) Microbial mediated preparation, characterization and optimization of gold nanoparticles. Braz J Microbiol 45:1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Bathrinarayanan PV, Thangavelu D, Muthukumarasamy VK, Munusamy C, Gurunathan B (2013) Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigates. Bull Mater Sci 36:1201–1205. doi:10.1007/s12034-013-0599-0

    Article  CAS  Google Scholar 

  • Bazylinski A, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230. doi:10.1038/nrmicro842

    Article  CAS  PubMed  Google Scholar 

  • Bhambure R, Bule M, Shaligram N, Kamat M, Singha R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger – its characterization and stability. Chem Eng Technol 32:1036–1041. doi:10.1002/ceat.200800647

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141. doi:10.1002/smll.200500180

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319. doi:10.2147/IJN.S23195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, Chen DH, Wang CR, Shiau AL, Wu CL (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4:713–722. doi:10.1021/mp060132k

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yi B, Zeng G, Niua Q, Yana M, Chen A, Dua J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B Biointerface 117:199–205. doi:10.1016/j.colsurfb.2014.02.027

    Article  CAS  Google Scholar 

  • Correa-Llanten DN, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12:75. doi:10.1186/1475-2859-12-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J Nanomater 2015:1–7. doi:10.1155/2015/789089

    Article  CAS  Google Scholar 

  • Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012) Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 6:6165–6173. doi:10.1021/nn301502s

    Article  CAS  PubMed  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Radhakrishnan JMEK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126. doi:10.1007/s13205-013-0130-8

    Article  PubMed  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640. doi:10.1099/mic.0.036681-0

    Article  CAS  PubMed  Google Scholar 

  • Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity 1:1–5. doi: 10.4172/scientificreports.557

  • Du D, Zou ZX, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989–2895. doi:10.1021/ac100036p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Gholampoor N, Emtiazi G, Emami Z (2015) The influence of Microbacterium hominis and Bacillus licheniformis extracellular polymers on silver and iron oxide nanoparticles production; green biosynthesis and mechanism of bacterial nano production. J Nanomater Mol Nanotechnol 4:1–6. doi:10.4172/2324-8777.1000102

    Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Oriental J Chem 31:527–529. doi:10.13005/ojc/310165

    Article  Google Scholar 

  • Gurunathan S (2014) Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. doi: 10.1016/j.arabjc.2014.11.014

  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Phram Pharmacol 60:977–985. doi:10.1211/jpp.60.8.0005

    Article  CAS  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2007) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:1–6. doi:10.1166/jnn.2008.095

    Article  Google Scholar 

  • Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W, Mao H (2013) Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5:4632–4639. doi:10.1021/am400713j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006. doi:10.1016/j.saa.2006.09.028

    Article  CAS  PubMed  Google Scholar 

  • Jacob JM, Raj Mohan B, Udaya BK (2014) Biosynthesis of lead selenide quantum rods in marine Aspergillus terreus. Mater Lett 124:279–281. doi:10.1016/j.matlet.2014.03.106

    Article  CAS  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586. doi:10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  • Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, Davis JJ, Baumann BC, Alonso-Basanta M, Bhang D, Kao GD, Tsourkas A, Dorsey JF (2013) Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 8:e62425. doi:10.1371/journal.pone.0062425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661. doi:10.1016/j.eururo.2006.11.023

    Article  PubMed  Google Scholar 

  • Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9. doi:10.1186/1477-3155-9-9

    Article  CAS  Google Scholar 

  • Joshi M, Bhatacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317

    CAS  Google Scholar 

  • Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6:139–140. doi:10.1038/nnano.2011.25

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong HY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665. doi:10.1021/ja071471p

    Article  CAS  PubMed  Google Scholar 

  • Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomedicine NBM 6:214–226. doi:10.1016/j.nano.2009.07.009

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani ZS, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12:289–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    PubMed  PubMed Central  Google Scholar 

  • Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from Magnetotactic bacteria using micro electromagnets arrays. Nano Lett 4:995–998. doi:10.1021/nl049562x

    Article  CAS  Google Scholar 

  • Lee H, Lee M-Y, Bhang SH, Kim B-S, Kim YS, Ju JH, Kim KS, Hahn SK (2014) Hyaluronate gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8:4790–4798. doi:10.1021/nn500685h

    Article  CAS  PubMed  Google Scholar 

  • Lengke M, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787. doi:10.1021/la052652c

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their Applications. J Nanomater 2011:1–16. doi:10.1155/2011/270974

    Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476. doi:10.3390/ijms13010466

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660. doi:10.1158/0008-5472.CAN-08-1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV, Ku G, Stafford RJ, Li C (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res (71):6116–6121. doi:10.1158/0008-5472.CAN-10-4557

  • Luo QY, Lin Y, Li Y, Xiong LH, Cui R, Xie ZX, Pang DW (2014) Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. Small 10:699–704. doi:10.1002/smll.201301940

    Article  CAS  PubMed  Google Scholar 

  • Maliszewska I, Puzio M (2009) Extracellular biosynthesis and antimicrobial activity of silver nanoparticles. Acta Phys Pol A 116:S160–S162

    Article  CAS  Google Scholar 

  • Manjili HK, Naderi-Manesh H, Mashhadikhan M, Mamani L, Nikzad S, Almussawi S (2014) The effect of iron-gold core shell magnetic nanoparticles on the sensitization of breast cancer cells to irradiation. J Paramed Sci 5:85

    Google Scholar 

  • Mittal AK, Kaler A, Mulay AV, Banerjee UC (2013) Synthesis of gold nanoparticles using whole cells of Geotrichum candidum. J Nanoparticle 2013:1–6. doi:10.1155/2013/150414

    Article  CAS  Google Scholar 

  • Moghaddam KM (2010) An introduction to microbial metal nanoparticle preparation method. J Young Investigators 19:1–7

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Kumar PAV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588. doi:10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148. doi:10.1002/adma.200802366

    Article  CAS  Google Scholar 

  • Nair CKK, Parida DK, Nomura T (2001) Radioprotectors in radiotherapy. J Radiat Res 42:21–37. doi:10.1269/jrr.42.21

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13. doi:10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  • Natarajan K, Selvaraj S, Ramachandra Murty V (2010) Microbial production of silver nanoparticles. Dig J Nanomater Biostruct 5:135–140

    Google Scholar 

  • Naveena BE, Prakash S (2013) Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 6:179–182. doi:10.1080/17458080.2015.1077534

    Google Scholar 

  • Pan D, Cai X, Yalaz C, Senpan A, Omanakuttan K, Wickline SA, Wang LV, Lanza GM (2012) Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano 6:1260–1267. doi:10.1021/nn203895n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Gurunathan S (2011) Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzym Microb Technol 48:319–325. doi:10.1016/j.enzmictec.2011.01.005

    Article  CAS  Google Scholar 

  • Paul D, Sinha SN (2014) Extracellular synthesis of silver nanoparticles using Pseudomonas aeruginosa KUPSB12 and its antibacterial activity. Jordan J Biol Sci 7:245–250. doi:10.12816/0008246

    Article  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Ianez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74:967–979. doi:10.1016/j.gca.2009.10.035

    Article  CAS  Google Scholar 

  • Punjabi K, Choudhary P, Samant L, Mukherjee S, Vaidya S, Chowdhary A (2015) Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30:219–226

    Google Scholar 

  • Rajasree SRR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:S795–S799. doi:10.1016/S2222-1808(12)60267-9

    Article  CAS  Google Scholar 

  • Ramachandran L, Nair CKK (2011) Therapeutic potentials of silver nanoparticle complex of α-lipoic acid. Nanomater Nanotechnol 1:17–24. doi:10.5772/50956

    Article  CAS  Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534. doi:10.1016/S0038-1098(01)00146-6

    Article  CAS  Google Scholar 

  • Rosarin FS, Mirunalini S (2011) Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed 3:085–091. doi:10.4172/1948-593X.1000049

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70. doi:10.1155/2009/734264

    Article  CAS  Google Scholar 

  • Salih NA (2013) The enhancement of breast cancer radiotherapy by using silver nanoparticles with 6 MeV gamma photons. Adv Phy Theories Appl 26:10–14. doi:10.1155/2012/751075

    Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5:247–253. doi:10.1166/jbn.2009.1029

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162. doi:10.1021/la001164w

    Article  CAS  Google Scholar 

  • Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V (2014) Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:234–239. doi:10.1016/j.msec.2014.08.030

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci 35:1201–1205. doi:10.1007/s12034-012-0417-0

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923. doi:10.1016/j.procbio.2007.02.005

    Article  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3:374–383

    Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7:102–105

    Google Scholar 

  • Shelar GB, Chavan AM (2014) Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. IJBAR 5:348–351. doi:10.7439/ijbar.v5i7.817

    Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807. doi:10.1016/j.procbio.2011.06.008

    Article  CAS  Google Scholar 

  • Singh PK, Kundu S (2014) Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India, Sect B Biol Sci 84:331–336. doi:10.1007/s40011-013-0230-6

    Article  CAS  Google Scholar 

  • Solomon M, D’Souza GGM (2011) Recent progress in the therapeutic applications of nanotechnology. Curr Opin Pediatr 23:215–220. doi:10.1097/MOP.0b013e32834456a5

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Yan Y, Zhao Y, Guo F, Jiang C (2012) Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One 7:e43442. doi:10.1371/journal.pone.0043442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67:70–93. doi:10.1002/ddr.20069

    Article  CAS  Google Scholar 

  • Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 106:41–47. doi:10.1016/j.saa.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147. doi:10.1016/j.saa.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262. doi:10.1016/j.nano.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 2013:1–5. doi:10.5402/2013/515091

    Google Scholar 

  • Thomas R, Janardhanan A, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45:1221–1227. doi:10.1590/S1517-83822014000400012

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SN, Dwarakanath BS, Ravindranath T (2005) Chemical radioprotectors. Def Sci J 55:403–425

    Article  CAS  Google Scholar 

  • Vala AK (2014) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34:194–197. doi:10.1002/ep.11949

    Article  CAS  Google Scholar 

  • Vali H, Weiss B, Li Y-L, Sears SK, Kim SS, Kirschvink JL, Zhang CL (2004) Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. PNAS 101:16121–16126. doi:10.1073/pnas.0404040101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Chitra K, Malarkodi C, Annadura G (2015) Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. IRJPBS 2:8–19

    Google Scholar 

  • Vanmathi Selvi K, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol App Sci 1:56–62

    Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. J Metal 62:100–102. doi:10.1007/s11837-010-0171-y

    Google Scholar 

  • Veeraapandian S, Sawant SN, Doble M (2012) Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. J Biomed Nanotechnol 8:1400148. doi:10.1166/jbn.2012.1356

    Article  CAS  Google Scholar 

  • Walter A, Billotey C, Garofalo A, Ulhaq-Bouillet C, Lefevre C, Taleb J, Laurent S, Elst LV, Muller RN, Lartigue L, Gazeau F, Felder-Flesch D, Begin-Colin S (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26:5252–5264. doi:10.1021/cm5019025

    Article  CAS  Google Scholar 

  • Wang D, Fei B, Halig LV, Qin L, Hu Z, Xu H, Wang YA, Chen Z, Kim S, Shin DM, Chen ZG (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620–6632. doi:10.1371/journal.pone.0062425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Qian J, Gu Y, Su Y, Ai X, Wu S (2014) Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells. Mater Res Express 1(015401):1–14. doi:10.1088/2053-1591/1/1/015401

    Google Scholar 

  • Yong P, Rowson AN, Farr JPG, Harris IR, Mcaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 55:593–601. doi:10.1002/jctb.606

    Article  CAS  Google Scholar 

  • Zeng L, Ren W, Zheng J, Cui P, Wu A (2012) Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys 14:2631–2636. doi:10.1039/c2cp23196d

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494. doi:10.1016/j.chemosphere.2010.10.023

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Pan D, Cai X, Yang X, Senpan A, Allen JS, Lanza GM, Wang LV (2015) ανβ3-targeted copper nanoparticles incorporating an sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics 5:124–133. doi:10.7150/thno.10014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to the Director, CSIR-IHBT, for providing infrastructure. We also thank Dr. V.C. Kalia who provided us an opportunity to write this chapter to be included in his book Integrative Biotechnology: Microbial Reservoirs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singla, R., Guliani, A., Kumari, A., Yadav, S.K. (2017). Role of Bacteria in Nanocompound Formation and Their Application in Medical. In: Kalia, V. (eds) Microbial Applications Vol.2. Springer, Cham. https://doi.org/10.1007/978-3-319-52669-0_1

Download citation

Publish with us

Policies and ethics