Skip to main content

Microbial Biofouling: A Possible Solution to Treat Harmful Microorganisms in Ship Ballast Water

  • Chapter
  • First Online:
Microbial Applications Vol.1

Abstract

Ships carry huge quantities of seawater in a specially designed ballast water tank required to sink in the sea. While loading cargoes, stored ballast water is discharged from ballast water tanks and vice versa. This compulsory exchange of ballast water is taking place for the past many decades. The movement of ballast water results in extensive transport and exchange of billions tons of national water in a global ocean along with many animals, plants, and microorganisms (especially pathogenic microorganisms such as bacteria, fungi, and pathogenic yeast). Ballast water exchange and transport results in invasion of unnecessary species into new environment. They accommodate into a new environment and utilize every available natural resource and become dominant. The complete eradication and removal of dominating pathogenic microorganisms is becoming a close to impossible task. These pathogenic species can be removed or their growth can be suppressed using halophilic antibiotic producers, halophilic bacterial bionts from marine invertebrates, and the use of mobile genome (host-specific bacteriophages/viruses). Only such natural methods will eradicate the pathogenic microorganisms from ballast water tank and will clean it. Moreover, the use of antipathogenic microorganisms checks microbial biofouling/invasion of new species through eco-friendly means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguila-Ramírez RN, Hernández-Guerrero CJ, González-Acosta B, Id-Daoud G, Hewitt S, Pope J, Hellio C (2014) Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. Int Biodeterior Biodegrad 90:64–70. doi:10.1016/j.ibiod.2014.02.003

    Article  Google Scholar 

  • Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161:252–262. doi:10.1016/j.micres.2005.09.002

    Article  PubMed  Google Scholar 

  • Atlas RM (2010) Handbook of microbiological media, 4th edn. University of Louisville, CRC Press, Florence, KY

    Book  Google Scholar 

  • Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA (2007) Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl Environ Microbiol 73:4543–4549. doi:10.1128/AEM.00049-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier RE, Lundquist DC, Forsberg RL, Meyer AE (2014) Suppressing biodiversity in the world’s waterbodies: ballast biofilms are the dental plaque of the oceans. J Biodivers Biopros Dev 1:1000109. doi:10.4172/2376-0214.1000109

    Google Scholar 

  • Border DJ, Buck KW, Chain EB, Kempson-Jones GF, Lhoas P, Ratti G (1972) Viruses of Penicillium and Aspergillus species. Biochem J 127:4P–6P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch TCG, Grasis JA, Lachnit T (2015) Microbial ecology in Hydra: why viruses matter. J Microbiol 53:193–200. doi:10.1007/s12275-015-4695-2

    Article  PubMed  Google Scholar 

  • Brodetsky AR, Romig WR (1965) Characterization of Bacillus subtilis bacteriophages. J Bacteriol 90:1655–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiol 151:2133–2140. doi:10.1099/mic.0.27849-0

    Article  Google Scholar 

  • Chambers L, Hellio C, Stokes K, Dennington S, Goodes L, Wood R, Walsh F (2011) Investigation of Chondus crispus as a potential source of new antifouling agents. Int Biodeterior Biodegrad 65:939–946. doi:10.1016/j.ibiod.2011.07.002

    Article  CAS  Google Scholar 

  • Chandran B, Rameshwaran G, Ravichandran S (2009) Antimicrobial activity from the gill extraction of Perna viridis (Linnaeus, 1758). Glob J Biotech Biochem 4:88–92

    CAS  Google Scholar 

  • Chhibber S, Kaur S, Kumari S (2008) Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57:1508–1513. doi:10.1099/jmm.0.2008/002873-0

    Article  PubMed  Google Scholar 

  • Clerissi C, Desdevises Y, Grimsley N (2012) Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 86:4611–4619. doi:10.1128/JVI.07221-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0000394.pub3

  • De Lappe N, Doran G, O’Connor J, O’Hare C, Cormican M (2009) Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J Med Microbiol 58:86–93. doi:10.1099/jmm.0.000034-0

    Article  CAS  PubMed  Google Scholar 

  • Deghorain M, Van Melderen L (2012) The Staphylococci phages family: an overview. Viruses 4:3316–3335. doi:10.3390/v4123316

    Article  PubMed  PubMed Central  Google Scholar 

  • Donio MBS, Ronica FA, Viji VT, Velmurugan S, Jenifer JSCS, Michaelbabu M, Dhar P, Citarasu T (2013) Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus 2:149. doi:10.1186/2193-1801-2-149

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake LA, Meyer AE, Forsberg RL, Baier RE, Doblin MA, Heinemann S, Johnson WP, KochM RPA, Dobbs FC (2005) Potential invasion of microorganisms and pathogens via “interior hull fouling”: biofilms inside ballast-water tanks. Biol Invasions 7:969–982. doi:10.1007/s10530-004-3001-8

    Article  Google Scholar 

  • Drake LA, Doblin MA, Dobbs FC (2007) Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar Pollut Bull 55:333–341. doi:10.1016/j.marpolbul.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, IWW (2011) Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming HC, Wingender J, Szewzyk U (eds) Biofilm highlights. Springer series on biofilms 5. Springer, Berlin. doi:10.1007/978-3-642-19940-0_5

  • Freshney RI (2010) Culture of animal cells: a manual of basic technique and specialized application, 6th edn. Wiley, Hoboken, NJ. doi:10.1002/9780470649367

    Book  Google Scholar 

  • Ghosh R, Chattopadhay PK, Chattopadhay B, Pal D (2010) Antibiotic resistance profiles of halophilic microorganisms isolated form tannery effluents. Indian J Biotechnol 9:80–86

    CAS  Google Scholar 

  • Gnanambal KM, Chellaram C, Patterson J (2005) Isolation of antagonistic bacteria from the surface of the Gorgorian corals at Tuticorin, South East coast of India. Indian J Mar Sci 34:316–319

    Google Scholar 

  • Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036. doi:10.1128/AEM.69.8.5032-5036.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooton SPT, Timms AR, Rowsell J, Wilson R, Connert IF (2011) Salmonella typhimurium-specific bacteriophage FSH19 and the origins of species specificity in the Vi01-like phage family. Virol J 8:498. doi:10.1186/1743-422X-8-498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. doi:10.4014/jmb.1105.05056

    Article  CAS  PubMed  Google Scholar 

  • Jensen MA, Faruque SH, Mekalanos JJ, Levin BR (2006) Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci U S A 12:4652–4657. doi:10.1073/pnas.0600166103

    Article  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC (2014a) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC (2014b) In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143. doi:10.1111/1574-6968.12585

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC (2015) Microbes: the most friendly beings? In: VC Kalia (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 1–5. doi: 10.1007/978-81-322-1982-8_1

  • Kalia VC, Kumar P (2015) The battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 385–391. doi:10.1007/978-81-322-1982-8_31

  • Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and—lactonase. Open Microbiol J 5:1–13. doi:10.2174/1874285801105010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia VC, Kumar P, Pandian SK, Sharma P (2014a) Biofouling control by quorum quenching. In: Kim SK (ed) Hb_25 Springer handbook of marine biotechnology, Chap. 15. Springer, Berlin, pp 431–440. doi: 10.1007/978-3-642-53971-8_15

  • Kalia VC, Wood TK, Kumar P (2014b) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi:10.1007/s00248-013-0316-y

    Article  CAS  PubMed  Google Scholar 

  • Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, Łusiak-Szelachowska M, Żaczek M, Górski A, Kropinski AM (2013) Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J 10:100. doi:10.1186/1743-422X-10-100

    Article  PubMed  PubMed Central  Google Scholar 

  • Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Mar Drugs 2:73–82

    Article  CAS  PubMed Central  Google Scholar 

  • Krasowska A, Biegalska A, Augustyniak D, Los M, Richert M, Lukaszewicz M (2015) Isolation and characterization of phages infecting Bacillus subtilis. Biomed Res. doi:10.1155/2015/179597

    Google Scholar 

  • Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Koul S, Patel SKS, Lee JK, Kalia VC (2015) Heterologous expression of quorum sensing inhibitory genes in diverse organisms. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 343–356. doi:10.1007/978-81-322-1982-8_28

  • La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoul D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455:100–104. doi:10.1038/nature07218

    Article  CAS  PubMed  Google Scholar 

  • Lalko J, Gunnel A (1967) A new Vi-phage-type of Salmonella typhi and preparation of the typing phage. Bull World Health Organ 36:227–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke PA, Nash CH (1974) Fungal viruses. Bacteriol Rev 38:29–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lettini AA, Saccardin C, Ramon E, Longo A, Cortini E, Dalla Pozza MC, Barco L, Guerra B, Luzzi I, Ricci A (2014) Characterization of an unusual Salmonella phage type DT7a and report of a foodborne outbreak of salmonellosis. Int J Food Microbiol 189:11–17. doi:10.1016/j.ijfoodmicro.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  • Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, Růžičková V, Pantůček R (2013) Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCC mec with different frequencies. Environ Microbiol Rep 5:66–73. doi:10.1111/j.1758-2229.2012.00378.x

    Article  PubMed  Google Scholar 

  • Matsushita K, Uchiyama J, Kato S, Ujihara T, Hoshiba H, Sugihara S, Muraoka A, Wakiguchi H, Matsuzaki S (2009) Morphological and genetic analysis of three bacteriophages of Serratia marcescens isolated from environmental water. FEMS Microbiol Lett 291:201–208. doi:10.1111/j.1574-6968.2008.01455.x

    Article  CAS  PubMed  Google Scholar 

  • NIID (National Institute of Infectious Diseases, Japan) (1998) Salmonella typhi & Salmonella paratyphi A phage types from human sources, Japan. http://www.nih.go.jp/niid/en/. Assessed on 21 Jul 2015 at 00:44:25.

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. doi:10.1111/j.1574-6976.2009.00200.x

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halo-philic microorganisms. Environ Technol 31:825–834. doi:10.1080/09593330903370026

    Article  CAS  PubMed  Google Scholar 

  • Petty NK, Foulds IJ, Pradel E, Ewbank JJ, Salmond GPC (2006) A generalized transducing phage (wIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiol 152:1701–1708. doi:10.1099/mic.0.28712-0

    Article  CAS  Google Scholar 

  • Pickard D, Toribio AL, Petty NK, van Tonder A, Yu L, Goulding D, Barrell B, Rance R, Harris D, Wetter M, Wain J, Choudhary J, Thomson N, Dougan G (2010) A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar typhi. J Bacteriol 192:5746–5754. doi:10.1128/JB.00659-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plouguerné E, Hellio C, Deslandes E, Véron B, Stiger-Pouvreau V (2008) Antimicrofouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticuma. Bot Mar 51:202–208. doi:10.1515/BOT.2008.026

    Article  Google Scholar 

  • Plouguerné E, Hellio C, Cesconetto C, Thabard M, Mason VB, Pereira RC, da Gama BAP (2010) Antifouling activity as a function of population variation in Sargassum vulgare from the littoral of Rio de Janeiro (Brazil). J Appl Phycol 22:717–724. doi:10.1007/s10811-010-9511-0

    Article  Google Scholar 

  • Plüddemann A, Van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43:439–446. doi:10.1007/s00294-003-0409-0

    Article  PubMed  Google Scholar 

  • Refos JM, Vonk AG, Eadie K, Lo-Ten-Foe JR, Verbrugh HA, van Diepeningen AD et al (2013) Double-stranded RNA mycovirus infection of Aspergillus fumigatus is not dependent on the genetic make-up of the host. PLoS One 8:e77381. doi:10.1371/journal.pone.0077381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezanka T, Prell A, Spizek J, Sigler K (2010) Pilot-plant cultivation of Streptomyces griseus producing homologues of nonactin by precursor-directed biosynthesis and their identification by LC/MS-ESI. J Antibiot 63:524–529. doi:10.1038/ja.2010.93

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues E, Supriya T, Naik CG (2004) Antimicrobial activity of marine organisms collected off the coast of South East India. J Exp Mar Biol Ecol 309:121–127. doi:10.1016/j.jembe.2004.03.010

    Article  Google Scholar 

  • Rohwer F, Breitbart M (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284. doi:10.1016/j.tim.2005.04.003

    Article  PubMed  Google Scholar 

  • Schmidt WC, Jeffries CD (1974) Bacteriophage typing of Proteus mirabilis, Proteus vulgaris and Proteus morganii. Appl Microbiol 27:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz E (2009) Microbial megaplasmids. In: Steinbüchel A (ed) Microbiology monographs, vol 11. Springer, Berlin. doi:10.1007/978-3-540-85467-8

    Google Scholar 

  • Selvin J, Priya SS, Kiran GS, Thangavelu T, Bai NS (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363. doi:10.1016/j.micres.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  • Souza KA, Ginoza HS, Haight RD (1972) Isolation of a polyvalent bacteriophage for Escherichia coli, Klebsiella pneumoniae, and Aerobacter aerogenes. J Virol 9(5):851–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srirangara D, Kali A, Charles MVP (2015) Distribution of Salmonella typhi phage types from Pondicherry, India. Indian J Pathomicrobiol 58:129–130. doi:10.4103/0377-4929.151220

    Google Scholar 

  • Thabard M, Id Daoud G, Véron B, Fletcher RL, Hellio C (2009) Screening of biological activities of extracts of Ralfsia verrucosa, Petalonia fascia and Scytosiphon lomentaria (Phaeophyceae, Scytosiphonales) for potential antifouling application. Electron J Nat Subst 4:1–10

    Google Scholar 

  • Todkar S, Todkar R, Kowale L, Karmarkar K, Kulkarni A (2012) Isolation and screening of antibiotic producing halophiles from Ratnagri coastal area, state of Maharahstra. Int J Sci Res Publ 2:1–3

    Google Scholar 

  • Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga H, Saito S, Sakai K, Yamaguchi R, Katsuyama I, Arakawa T, Tokunaga M (2010) Halophilic β-lactamase as a new solubility-and folding-enhancing tag protein: production of native human interleukin 1α and human neutrophil α-defensin. Appl Microbiol Biotechnol 86:649–658. doi:10.1007/s00253-009-2325-9

    Article  CAS  PubMed  Google Scholar 

  • Trung ND, Suthisarnsuntorn U, Kalambaheti T, Wonglumsom W, Tunyong W (2007) Antimicrobial susceptibility patterns and phage types of Salmonella typhi from Vietnam. Southeast Asian J Trop Med Public Health 38:487–492

    CAS  PubMed  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123. doi:10.1126/science.1103569

    Article  PubMed  Google Scholar 

  • Velho Pereira S, Furtado I (2012) Antibacterial activity of halophilic bacterial bionts from marine invertebrates of Mandapam India. Indian J Pharm Sci 74:331–338. doi:10.4103/0250474X

    Article  PubMed  PubMed Central  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079. doi:10.1016/j.procbio.2013.06.006

    Article  CAS  Google Scholar 

  • Wall SK, Zhang J, Rostagno MH, Ebner PD (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol 76:48–53. doi:10.1128/AEM.00785-09

    Article  CAS  PubMed  Google Scholar 

  • Wang LC, Bu T, Zhang Y, Wang Y, Liu M, Lin X (2010) Halophilic bacteria isolated from the Weihai Solar Saltern (China) phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria. World J Microbiol Biotechnol 26:879–888

    Article  CAS  Google Scholar 

  • Weynberg KD, Allen MJ, Gilg IC, Scanlan DJ, Wilson WM (2011) Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean. J Virol 85:4520–4529. doi:10.1128/JVI.02131-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601. doi:10.1016/j.meegid.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Su QP, Wang GY, Wen DZ, Zhang YH, Bao HZ, Wang L (2007) Production of hybrid phage displaying secreted aspartyl proteinase epitope of Candida albicans and its application for the diagnosis of disseminated candidiasis. Mycoses 50:165–171. doi:10.1111/j.1439-0507.2006.01349.x

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wen Z, Yang W, Li N, Wang J, Lu J, Li J (2008) Isolation and characterization of Serratia marcescens phage. Wei Sheng Wu Xue Bao 48:498–502

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Registrar of Swami Ramanand Teerth Marathwada University, Nanded, for providing all available necessary facilities. BNR is thankful to University Grants Commission, New Delhi, India, for granting Postdoctoral Fellowship. BNR is grateful to Dr. G. Dharni, Scientist E, National Institute of Ocean Technology, Chennai (TN), India, for his valuable guidance. BNR is also thankful to Dr. Satheesh C. Shennoi, Director, ESSO-Indian National Information Centre for Ocean Information (ESSO-INCOIS), Hyderabad (India), and Dr. N. Ramaiah, Chief Scientist, National Institute of Oceanography (NIO), Goa, India, for giving a chance to become a part of the International Training Course on ”Biological Oceanographic Processes” organized by the International Training Centre for Operational Oceanography (ITCOocean), INCOIS, Hyderabad, and CSIR-NIO, Goa (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Rekadwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rekadwad, B., Khobragade, C. (2017). Microbial Biofouling: A Possible Solution to Treat Harmful Microorganisms in Ship Ballast Water. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_6

Download citation

Publish with us

Policies and ethics