Skip to main content

Bacterial Decolourization, Degradation and Detoxification of Azo Dyes: An Eco-friendly Approach

  • Chapter
  • First Online:
Microbial Applications Vol.1

Abstract

Recent decades have noticed that the wastewater loaded with dyes is one of the most challenging to treat. There has been comprehensive research on azo dye biodegradation with the help of microorganisms. It is evolving as a promising substitute to the conventional treatment with physico-chemical methods. In this chapter, the use of various bacterial cultures, either in pure or mixed form, for their capability to decolourize dye wastewaters was described. Apart from microorganisms involved, this chapter focuses on various mechanisms involved in the dye biodegradation along with the impact of several factors influencing biodegradation of dye wastewater and the role of oxidoreductases involved in bacterial dye biodegradation. The various analytical techniques used for deducing the metabolic pathway for dye remediation and ensuring its detoxification through toxicity tests are described. The chapter also highlights the huge gap between the scientific progresses in this field and lack of commercialization of research. The information gathered here will be useful for the students, teacher, industrial persons and researchers to understand the state of the art of the subject and use it for removal of dye pollution by possible green technology for the sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal S, Tipre D, Dave SR (2014a) Isolation, characterization and study of microorganisms capable of decolourizing triazo dye Acid Black 210. Ind J Environ Protect 34:540–546

    Google Scholar 

  • Agrawal S, Tipre D, Patel B, Dave S (2014b) Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Proc Biochem 49:110–119. doi:10.1016/j.procbio.2013.10.006

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—A review. Water Air Soil Pollut 213:251–273. doi:10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  • An SY, Min S, Cha IH, Choi Y, Cho YS, Kim CH, Lee YC (2002) Decolourization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol Lett 24:1037–1040. doi:10.1023/A:1015610018103

    Article  CAS  Google Scholar 

  • Anjaneya O, Souche YS, Santoshkumar M, Karegoudar TB (2011) Decolourization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp . strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater 190:351–358. doi:10.1016/j.jhazmat.2011.03.044

    Article  CAS  PubMed  Google Scholar 

  • APHA, Standard Methods for the Examination of Water and Wastewater (1998) APHA-AWWA-WEF, 20th edn. Washington DC, USA. Method 2120 E. isbn: 0-875530788

    Google Scholar 

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1. FEMS Microbiol Lett 236:129–136. doi:10.1016/j.femsle.2004.05.034

    Article  PubMed  Google Scholar 

  • Bonakdarpour B, Vyrides I, Stuckey DC (2011) Comparison of the performance of one stage and two stage sequential anaerobic-aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. Int Biodeter Biodegr 65:591–599. doi:10.1016/j.ibiod.2011.03.002

    Article  CAS  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants ten years after the Stockholm convention—environmental and analytical update. InTech, Croatia, pp 55–86. isbn: 978-953-307-917-2

    Google Scholar 

  • Chan GF, Rashid ANN, Chua LS, Nasiri R, Roslan M, Ikubar MRM (2012) Communal microaerophilic–aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresour Technol 105:48–59. doi:10.1016/j.biortech.2011.11.094

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Feng J, Kweon O, Xu H, Cerniglia CE (2010) Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24. BMC Biochem 11:13–22. doi:10.1186/1471-2091-11-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441. doi:10.1099/mic.0.27805-0

    Article  CAS  PubMed  Google Scholar 

  • Chequer FMD, Dorta DJ, De Oliveira DP (2011) Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks. In: Hauser PJ (ed) Advances in treating textile effluent. InTech, Croatia EU, pp 28–48, isbn: 978-953-307-704-8

    Google Scholar 

  • Christie RM (2001) Colour chemistry, vol 27. The Royal Soiety of Chemistry, Cambridge, UK. doi:10.1039/9781847550590

    Google Scholar 

  • Dave SR, Patel TL, Tipre DR (2015) Bacterial degradation of azo dye containing wastes. In: Singh SN (ed) Microbial degradation of synthetic dyes in waste water. Springer, Cham, Switzerland, pp 57–83. doi:10.1007/978-3-319-10942-8_3

    Google Scholar 

  • Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP (2009) Effect of inducers on the decolourization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20:777–787. doi:10.1007/s10532-009-9266-y

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Golyshin PN (2010) Screening metagenomic libraries for laccase activities. In: Wolfgang RS, Rolf D (eds) Metagenomics: methods and protocols. Humana Press, London, pp 189–202. doi:10.1007/978-1-60761-823-2_13

    Chapter  Google Scholar 

  • Ghodake G, Jadhav S, Dawkar V, Govindwar S (2009) Biodegradation of diazo dye Direct brown MR by Acinetobacter calcoaceticus NCIM 2890. Int Biodeter Biodegr 63:433–439. doi:10.1016/j.ibiod.2008.12.002

    Article  CAS  Google Scholar 

  • Gomare SS, Jadhav JP, Govindwar SP (2008) Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Beiotechnol Bioprocess Eng 13:1–8. doi:10.1007/s12257-008-0008-5

    Article  Google Scholar 

  • Gomare SS, Tamboli DP, Kagalkar AN, Govindwar SP (2009) Eco-friendly biodegradation of a reactive textile dye Golden Yellow HER by Brevibacillus laterosporus MTCC 2298. Int Biodeter Biodegr 63:582–586. doi:10.1016/j.ibiod.2009.03.005

    Article  CAS  Google Scholar 

  • Hsueh CC, Chen BY, Yen CY (2009) Understanding effects of chemical structure on azo dye decolourization characteristics by Aeromonas hydrophila. J Hazard Mater 167:995–1001. doi:10.1016/j.jhazmat.2009.01.077

    Article  CAS  PubMed  Google Scholar 

  • Hunger K (ed) (2003) Industrial dyes chemistry, properties, applications. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. isbn: 978-3-527-30426-4.

    Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolourization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140. doi:10.1007/s11157-009-9184-9

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101:165–173. doi:10.1016/j.biortech.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  • Jadhav JP, Phugare SS (2012) Textile dyes: general information and environmental aspects. In: Nemr A El (ed) Non-conventional textile waste water treatment. Nova Science, New York, pp 1–345. isbn: 978-1-62100-228-4.

    Google Scholar 

  • Jadhav SB, Phugare SS, Patil PS, Jadhav JP (2011) Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Int Biodeter Biodegr 65:733–743. doi:10.1016/j.ibiod.2011.04.003

    Article  CAS  Google Scholar 

  • Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolourization of C. I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163:1123–1128. doi:10.1016/j.jhazmat.2008.07.067

    Article  CAS  PubMed  Google Scholar 

  • Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4:22–26. doi:10.4236/ns.2012.41004

    CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: Recent advances and future potential. Environ Int 35:127–141. doi:10.1016/j.envint.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008) Decolourization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059. doi:10.1007/s00253-008-1498-y

    Article  CAS  PubMed  Google Scholar 

  • Koupaie EH, Moghaddam MRA, Hashemi SH (2013) Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18 : Comparison of using two types of packing media. Bioresour Technol 127:415–421. doi:10.1016/j.biortech.2012.10.003

    Article  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24. doi:10.2174/187220808783330965

    Article  CAS  PubMed  Google Scholar 

  • Lade H, Govindwar S, Paul D (2015) Mineralization and detoxification of the carcinogenic azo dye Congo Red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int J Environ Public Health 12:6894–6918. doi:10.3390/ijerph120606894

    Article  CAS  Google Scholar 

  • Lang AR (ed.) (2009) Dyes and pigments: new research. Nova Science, New York. isbn: 978-1-60876-195-1

    Google Scholar 

  • Maier J, Kandelbauer A, Erlancher A, Cavaco-Paulo A, Gubits GM (2004) A new alkali thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844. doi:10.1128/AEM.70.2.837-844.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangal VP (2010) The future of Indian dyes and dye intermediates. Textile Rev www.fibre2fashion.com, accessed on June 6, 2014

  • Mansoor I (2008) Textile dyes. Rahber Publishers, Karachi

    Google Scholar 

  • Mazumder R, Logan JR, Mikell JAT, Hooper SW (1999) Characteristics and purification of an oxygen insensitive azoreductase from Caulobacter subvibrioides strain C7-D. J Ind Microbiol Biotechnol 23:76–483

    Article  Google Scholar 

  • Meng X, Liu G, Zhou J, Shiang FQ, Wang G (2012) Azo dye decolourization by Shewanella aquimarina under saline conditions. Bioresour Technol 114:95–101. doi:10.1016/j.biortech.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  • Misal SA, Lingojwar DP, Shinde RM, Gawai KR (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Proc Biochem 46:1264–1269. doi:10.1016/j.procbio.2011.02.013

    Article  CAS  Google Scholar 

  • Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolourization of textile dye Direct Black 22 by a novel bacterial consortium. Biresour Technol 99:562–569. doi:10.1016/j.biortech.2006.12.033

    Article  CAS  Google Scholar 

  • Nishiya Y, Yamamoto Y (2007) Characterization of a NADH: dichloroindophenol oxidoreductase from Bacillus subtilis. Biosci Biotechnol Biochem 71:611–614. doi:10.1271/bbb.60548

    Article  CAS  PubMed  Google Scholar 

  • Ola IO, Akintokun AK, Akpan I, Omomowo IO, Areo VO (2010) Aerobic decolourization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9:672–677

    Article  CAS  Google Scholar 

  • Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of Malachite Green by Kocuriarosea MTCC 1532. Acta Chim Solv 53:492–498

    CAS  Google Scholar 

  • Patil PS, Shedbalkar UU, Kalyani DC, Jadhav JP (2008) Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11. J Ind Microbiol Biotechnol 35:1181–1190. doi:10.1007/s10295-008-0398-6

    Article  CAS  PubMed  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigment 58:179–196. doi:10.1016/S0143-7208(03)00064-0

    Article  CAS  Google Scholar 

  • Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723. doi:10.1016/j.jhazmat.2010.11.049

    Article  CAS  PubMed  Google Scholar 

  • Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biologocal treatment. Crit Rev Environ Sci Technol 35:219–238. doi:10.1080/10643380590917932

    Article  CAS  Google Scholar 

  • Sandhya S, Sarayu K, Uma B, Swaminathan K (2008) Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductase gene from Bacillus latrosporus RRK1. Bioresour Technol 99:2187–2191. doi:10.1016/j.biortech.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  • Santos B, Cervantes FJ, Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  PubMed  Google Scholar 

  • Saratale RG, Gandhi SS, Purankar MV, Kurade MB, Govindwar SP, Oh SE, Saratale GD (2012) Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115:658–667. doi:10.1016/j.jbiosc.2012.12.009

    Article  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2010) Decolourization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015. doi:10.1007/s10532-010-9360-1

    Article  CAS  PubMed  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolourization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157. doi:10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolourization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500. doi:10.1016/j.biortech.2008.12.013

    Article  CAS  PubMed  Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160:1241–1253. doi:10.1007/s12010-009-8592-1

    Article  CAS  PubMed  Google Scholar 

  • Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation 15:275–280

    Article  CAS  PubMed  Google Scholar 

  • Shah PD, Dave SR, Rao MS (2012) Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int Biodeter Biodegr 69:41–50. doi:10.1016/j.ibiod.2012.01.002

    Article  CAS  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832. doi:10.1007/s11274-006-9305-3

    Article  CAS  Google Scholar 

  • Sheth NT, Dave SR (2009) Optimisation for enhanced decolourization and degradation of reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS. Biodegradation 20:827–836. doi:10.1007/s10532-009-9270-2

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Chatterji S, Nandini PT, Prasad ASA, Rao KVB (2015) Biodegradation of azo dye Direct Orange 16 by Micrococcus luteus SSN2. Int J Environ Sci Technol 12:2161–2168. doi:10.1007/s13762-014-0588-x

    Article  CAS  Google Scholar 

  • Solis M, Solis A, Perez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Proc Biochem 47:1723–1748. doi:10.1016/j.procbio.2012.08.014

    Article  CAS  Google Scholar 

  • Telke AA, Kadam AA, Govindwar SP (2015) Bacterial enzymes and their role in decolourization of azo dyes. In: Singh SN (ed) Microbial degradation of synthetic dyes in waste water. Springer, Cham, Switzerland, pp 57–83. doi:10.1007/978-3-319-10942-8_7

    Google Scholar 

  • Van Der Zee FP (2002) Anaerobic azo dye reduction. Ph.D. Thesis, Wageningen University, Wageningen, Netherlands.

    Google Scholar 

  • Van Der Zee FP, Villaverde S (2005) Combined anaerobic-aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res 39:1425–1440. doi:10.1016/j.watres.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Qiang J, Wei X, Tian Y, Jing X, Ling T (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red. Int Biodeter Biodegr 63:395–399. doi:10.1016/j.ibiod.2008.11.006

    Article  CAS  Google Scholar 

  • Wijetunga S, Xiufen L, Wenquan R, Chen J (2007) Removal mechanisms of acid dyes of different chemical groups under anaerobic mixed culture. Ruhuna J Sci 2:96–110

    Google Scholar 

  • Wilson K, Walker JM (2010) Principles and techniques of biochemistry and molecular biology. 7th Ed England: Cambridge University Press. 10: 0521731674.

    Google Scholar 

  • Yonar T (2011) Decolorisation of textile dyeing effluents using advanced oxidation processes. In: Hauser PJ (ed) Advances in treating textile effluent. InTech, Croatia EU, pp 28–48. isbn: 978-953-307-704-8

    Google Scholar 

  • Zaharia C, Suteu D, Muresan A (2012) Option and solutions for textile effluent decolourization using some specific physico-chemical treatment steps. Environ Eng Manag J 11:493–509

    CAS  Google Scholar 

  • http://envirosystems.net/effluent-treatment-plant/, Accessed on October 20, 2015

  • http://metacyc.org/

  • http://planningcommission.gov.in/aboutus/committee/wrkgrp12/wg_chem0203.pdf, Accessed on November 23, 2015.

  • http://www.genome.jp/kegg/pathway.html

  • http://www.indiaenvironmentportal.org.in/content/573/united-colours-of-industry/, Accessed on June 18, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Agrawal, S., Tipre, D., Patel, B., Dave, S. (2017). Bacterial Decolourization, Degradation and Detoxification of Azo Dyes: An Eco-friendly Approach. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_4

Download citation

Publish with us

Policies and ethics