Skip to main content

Phycoremediation: An Eco-friendly Approach to Solve Water Pollution Problems

  • Chapter
  • First Online:
Microbial Applications Vol.1

Abstract

Increasing anthropogenic and industrial activities along with improper wastewater management strategies are the major causes of elevated levels of pollution in water bodies, a serious environmental challenge globally. The release of water loaded with various chemicals, mainly phosphates and nitrates, causes eutrophication in water bodies. In the present scenario, algae seem to be the possible solution with various advantages and eco-friendly nature. Algae are photosynthetic microorganisms inhabiting marine, brackish, and freshwater environments. They can serve multiple roles: remediation of wastewater simultaneously producing biomass for biofuel generation with parallel sequestration of carbon dioxide. Additionally, treatment of wastewater by means of algae is an environmentally safe process without any secondary pollution. In this chapter, a broad variety of techniques available for algal wastewater treatment (phycoremediation) are discussed such as photobioreactors, open raceway ponds, High Rate Algal Ponds (HRAPs), algal mats, hyper-concentrated culture system, and dialysis culture. These options could prove to be efficient methods for wastewater treatment supporting green technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH (1982) Algal turf scrubber. USA Patent No 4333263

    Google Scholar 

  • Ahmad F, Khan AU, Yasar A (2012) Uptake of nutrients from municipal wastewater and biodiesel production by mixed algae culture. Pak J Nut 11:550–554. doi:10.3923/pjn.2012.648.652

    CAS  Google Scholar 

  • Aziz MA, Ng WJ (1992) Feasibility of wastewater treatment using the activated-algae process. Bioresour Technol 40:205–208. doi:10.1016/0960-8524(92)90143-L

    Article  CAS  Google Scholar 

  • Badr SA, Ghazy ME, Moghazy RM (2010) Toxicity assessment of cyanobacteria in a wastewater plant. Egypt J Appl Sci Res 6:1511–1516

    CAS  Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980. doi:10.1021/es102052y

    Article  CAS  PubMed  Google Scholar 

  • Benemann JR (2008) Open ponds and closed photobioreactors—comparative economics 5th annual world congress on industrial biotechnology and bioprocessing Chicago, 30 April

    Google Scholar 

  • Benemann JR, Pursoff P, Oswald WJ (1978) Engineering design and cost analysis of a large-scale microalgae biomass system US Depart Energy

    Google Scholar 

  • Bernal CB, Vazquez G, Quintal IB, Bussy AN (2008) Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air Soil Pollut 190:259–270. doi:10.1007/s11270-007-9598-3

    Article  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquacult 151:315–331. doi:10.1016/SOO44-8486(96)01501-3

    Article  CAS  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56. doi:10.1016/j.biortech.2010.06.048

    Article  CAS  PubMed  Google Scholar 

  • Cauchie HM, Hoffmann L, Jaspar-Versali MF, Salvia M, Thomé JP (1995) Daphnia magna straus living in an aerated sewage lagoon as a source of chitin: ecological aspects. J Zool 125:67–78

    Google Scholar 

  • Chevalier P, De la-Noüe J (1985) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb Technol 7:621–624. doi:10.1016/0141-0229(85)90032-8

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–6760. doi:10.1016/j.biortech.2010.03.094

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh YK, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102:8639–8645. doi:10.1016/j.biortech.2011.03.037

    Article  CAS  PubMed  Google Scholar 

  • CPCB (2005a) Parivesh sewage pollution—News Letter Central Pollution Control Board Ministry of Environment and Forests, Govt. of India

    Google Scholar 

  • CPCB (2005b) Performance status of common effluent treatment plants in India Central Pollution Control Board, India

    Google Scholar 

  • Craggs RJ (2005) Advanced integrated wastewater ponds In: Shilton A (ed) Pond treatment technology, IWA scientific and technical report series. IWA, London, pp 282–310

    Google Scholar 

  • De la Noüe J, Proulx D (1988) Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 29:292–297. doi:10.1007/BF01982919

    Article  Google Scholar 

  • De-Bashana LE, Morenoa M, Hernandeza JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948. doi:10.1016/S0043-1354(01)00522-X

    Article  Google Scholar 

  • Dubey SK, Dubey J, Viswas AJ, Tiwali P (2011) Studies on cyanobacterial biodiversity in paper mill and pharmaceutical industrial effluents. Br Biotechnol J 1:61–67. doi:10.9734/BBJ/2011/395

    Article  Google Scholar 

  • Elmahadi HAM, Greenway GM (1991) Immobilized alga as a reagent for pre-concentration in trace element atomic absorption spectrometry. J Anal Atom Spectrom 6:643–646. doi:10.1039/JA9910600643

    Article  CAS  Google Scholar 

  • Fallowfield HD, Garrett MK (1985) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot plant study. Agric Waste 12:111–136. doi:10.1016/0141-4607(85)90003-4

    Article  CAS  Google Scholar 

  • Fouilland E (2012) Biodiversity as a tool for waste phycoremediation and biomass production. Rev Environ Sci Biotechnol 11:1–4. doi:10.1007/s11157-012-9270-2

    Article  Google Scholar 

  • Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67:62–69. doi:10.1016/0922-338X(89)90088-3

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Li B, Zhang C, Zhang Z, Lei Z, Lu B, Zhou B (2015) Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol 179:187–192. doi:10.1016/j.biortech.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  • Hussein NR, Gharib SM (2012) Studies on spatio-temporal dynamics of phytoplankton in El-Umum drain in west of Alexandria. Egypt J Environ Biol 33:101–105

    PubMed  Google Scholar 

  • Jebali A, Acien FG, Gomez C, Fernandez-Sevilla JM, Mhiri N, Karray F, Dhouib A, Molina-Grima E, Sayadi S (2015) Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresour Technol 198:424–430. doi:10.1016/j.biortech.2015.09.037

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Wani SP, Singh AK, Lal K (2012) Wastewater production treatment and use in India. Country report, India

    Google Scholar 

  • Kiran B, Kaushik A (2008) Cyanobacterial biosorption of Cr (VI): application of two parameter and Bohart Adams models for batch and column studies. Chem Eng J 144:391–399. doi:10.1016/j.cej.2008.02.003

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2007) Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J 126:147–153. doi:10.1016/j.cej.2006.09.002

    Article  CAS  Google Scholar 

  • Kiran B, Pathak K, Kumar R, Deshmukh D (2014a) Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecol Eng J 73:326–330. doi:10.1016/j.ecoleng.2014.09.094

    Article  Google Scholar 

  • Kiran B, Kumar R, Deshmukh D (2014b) Perspectives of microalgal biofuels as a renewable source of energy. Energy Conver Manage J 88:1228–1244. doi:10.1016/j.enconman.2014.06.022

    Article  CAS  Google Scholar 

  • Kobbai I, Dewedar AE, Hammouda O, Hameed MSA, May E (2000) Immobilized algae for wastewater treatment. Proc 1st Int Conf Biol Sci (ICBS) Fac Sci Tanta University 1:114–122

    Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18. doi:10.1007/s12010-009-8670-4

    Article  CAS  PubMed  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481. doi:10.1021/es900705j

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydro Energy 31:659–667. doi:10.1016/j.ijhydene.2005.05.002

    Article  CAS  Google Scholar 

  • Lavoie A, De la Noüe J (1985) Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment. Water Res 19:1437–1442. doi:10.1016/0043-1354(85)90311-2

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Matinez B, Zhou J, Roan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144. doi:10.1016/j.biortech.2011.01.091

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Vyverman W (2015) Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp. Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour Technol 179:234–242. doi:10.1016/j.biortech.2014.12.028

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhang Q, Liu G (2010) Lake eutrophication associated with geographic location lake morphology and climate in China. Hydrobiologia 644:289–299. doi:10.1007/s10750-010-0151-9

    Article  CAS  Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow fibre photobioreactor enzyme. Microbiol Technol 17:306–310. doi:10.1016/0141-0229(94)00010-7

    Article  CAS  Google Scholar 

  • Marsot P, Cembella A, Houle L (1991) Growth kinetics and nitrogen-nutrition of the marine diatom Phaeodactylum tricomutum in continuous dialysis culture. J Appl Phycol 3:1–10. doi:10.1007/BF00003914

    Article  CAS  Google Scholar 

  • McGriff EC, McKinney RC (1972) The removal of nutrients and organics by activated algae. Water Res 6:1155–1158. doi:10.1016/0043-1354(72)90015-2

    Article  CAS  Google Scholar 

  • Morales J, De la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacult Eng 4:257–270. doi:10.1016/0144-8609(85)90018-4

    Article  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C (2006) Biofertilizers from algal treatment of dairy and swine manure effluents: characterization of algal Biomass as a slow release fertilizer. J Veget Sci 12:107–125. doi:10.1300/J484v12n04_08

    Article  Google Scholar 

  • Ochiai H, Shibata H, Sawa Y, Katoh T (1980) “Living electrode” as a long-lived photoconverter for bio-photolysis of water. Proc Natl Acad Sci U S A 77:2442–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochiai H, Shibata H, Sawa Y, Shoga M, Ohta S (1983) Properties of semiconductor electrodes coated with living films of cyanobacteria. Appl Biochem Biotechnol 8:289–303. doi:10.1007/BF02779496

    Article  CAS  Google Scholar 

  • Oswald WJ (1980) Algal production—problems achievements and potential In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier North/Holland/Biomedical Press, Amsterdam, pp 1–8

    Google Scholar 

  • Pouliot Y, Buelna G, Racine C, De la Noüe J (1989) Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biol Waste 29:81–91. doi:10.1016/0269-7483(89)90089-X

    Article  CAS  Google Scholar 

  • Rao KK, Hall DO (1984) Photosynthetic production of fuels and chemicals in immobilized systems. Trends Biotechnol 2:124–129. doi:10.1016/0167-7799(84)90021-0

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Nutrient sequestration biomass production by microalgae and phytoremediation of sewage water. Int J Phytorem 15:789–800. doi:10.1080/15226514.2012.736436

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia AS (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12:1443–1460. doi:10.1007/s13762-014-0700-2

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64. doi:10.1016/j.biortech.2009.02.076

    Article  CAS  PubMed  Google Scholar 

  • Sawayama S, Rao KK, Hall KK (1998) Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468. doi:10.1007/s002530051199

    Article  CAS  Google Scholar 

  • Selvaratnam T, Pegallapati P, Montelya F, Rodriguez G, Nirmalakhandan N, Lammers PJ, Voorhies WV (2015) Feasibility of algal systems for sustainable wastewater treatment. Renew Energy 82:71–76. doi:10.1016/j.renene.2014.07.061

  • Sen B, Alp MT, Sonmez F, Kocer MAT, Canpolat O (2013) Relationship of algae to water pollution and waste water treatment. In: Elshorbagy W (ed) Water treatment. ISBN: 978-953-51-0928-0

    Google Scholar 

  • Sharma GK, Khan SA (2013) Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manage 4:573–580

    Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423. doi:10.1007/s10811-006-9148-1

    Article  CAS  Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506. doi:10.1016/j.apenergy.2010.12.056

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358. doi:10.1016/j.watres.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  • Sukacova K, Trtilek M, Rataj T (2015) Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res 71:55–63. doi:10.1016/j.watres.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34. doi:10.1016/0269-7491(89)90234-0

    Article  CAS  PubMed  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 7:145–151. doi:10.1016/S0269-7491(99)00118-9

    Article  Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. Bioresour Technol 40:183–187. doi:10.1016/0960-8524(92)90207-E

    Article  CAS  Google Scholar 

  • Van Harmelen T, Oonk H (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. Report for the international network on biofixation of CO2 and greenhouse gas abatement with microalgae operated under the international energy agency greenhouse gas R&D programme, Netherlands, Order No 36562

    Google Scholar 

  • Vasconcelos VM, Pereira E (2001) Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res 35:1354–1357. doi:10.1016/S0043-1354(00)00512-1

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar S, Thajuddin N, Manoharan C (2007) Biodiversity of cyanobacteria in industrial effluents. Acta Bot Malacit 32:27–34

    Google Scholar 

  • Voltolina D, Beatriz Cordero B, Nievesc M, Soto LP (1998) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268. doi:10.1016/S0960-8524(98)00150-3

    Article  Google Scholar 

  • Wang Y, Huang G (2003) Nitrate and phosphate removal by co-immobilized Chlorella pyrenoidosa and activated sludge at different pH values. Water Qual Res J Can 38:541–551

    Google Scholar 

  • Wang L, Mim M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2009) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186. doi:10.1007/s12010-009-8866-7

    Article  PubMed  Google Scholar 

  • Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M (2008) Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng China 2:446–451. doi:10.1007/s11783-008-0064-2

    Article  Google Scholar 

  • Xin L, Honh-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth nutrient uptake and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. doi:10.1016/j.biortech.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Wu X, Hao HL, He ZL (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9:197–209. doi:10.1631/jzus.B0710626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang TY, Wu HY, Hu HY (2014) Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci Technol 69:2492–2496. doi:10.2166/wst.2014.160

    Article  Google Scholar 

  • Zhu L, Hiltunen E, Shu Q, Zhou W, Li Z, Wang Z (2014) Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid. Appl Energy 128:103–110. doi:10.1016/j.apenergy.2014.04.039

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors acknowledge financial assistance provided by Department of Science and Technology, Govt. of India under the INSPIRE Faculty Scheme (IFA12–EAS-01). The funding organization has not played any role in study design, decision to publish, or preparation of the manuscript.

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiran, B., Pathak, K., Kumar, R., Deshmukh, D. (2017). Phycoremediation: An Eco-friendly Approach to Solve Water Pollution Problems. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_1

Download citation

Publish with us

Policies and ethics